DOI QR코드

DOI QR Code

Biodegradable PLA-based Biocomposites with Spent Coffee Grounds as Degradation Accelerator: Hydrolytic Degradation and Characterization Research

  • 투고 : 2022.07.28
  • 심사 : 2022.08.16
  • 발행 : 2022.08.31

초록

The goal of this study was to evaluate the effect of spent coffee grounds (SCG) biofiller on the morphological, thermal, mechanical and hydrolytic degradation characteristics of poly(lactic acid) (PLA) based biocomposites. The PLA-based biocomposite films were fabricated by using a high-viscosity kneading and hot-pressing machine. The PLA/SCG biocomposites were analyzed with SEM, DSC, TGA, UTM and hydrolytic degradation test. Aggregation in the PLA matrix is a result of increasing SCG concentrations. In the thermal properties, it was described that the cold crystallization temperature (Tcc) decreased as SCG was added to PLA. When SCG was incorporated to PLA, the degradation onset temperature (Tonset) revealed a diminish. The elastic modulus increased while tensile strength of PLA diminished as SCG was applied. Through hydrolysis analysis, the decomposition of PLA was accelerated with the addition of SCG. This research confirmed the possibility of devloping an eco-friendly packaging material with high degradability as SCG hasten the breakdown of PLA.

키워드

참고문헌

  1. Lubis, M., Harahap, M. B., Ginting, M. H. S., Maysarah, S., & Gana, A. 2018. The effect of ethylene glycol as plasticizer against mechanical properties of bioplastic originated from jackfruit seed starch and cocoa pod husk. Nusantara Bioscience, 10(2), 76-80. https://doi.org/10.13057/nusbiosci/n100202
  2. Bilo, F., Pandini, S., Sartore, L., Depero, L. E., Gargiulo, G., Bonassi, A., & Bontempi, E. 2018. A sustainable bioplastic obtained from rice straw. Journal of cleaner production, 200, 357-368. https://doi.org/10.1016/j.jclepro.2018.07.252
  3. Thompson, R. C., Moore, C. J., Vom Saal, F. S., & Swan, S. H. 2009. Plastics, the environment and human health: current consensus and future trends. Philosophical transactions of the royal society B: biological sciences, 364(1526), 2153-2166. https://doi.org/10.1098/rstb.2009.0053
  4. Filiciotto, L., & Rothenberg, G. 2021. Biodegradable plastics: Standards, policies, and impacts. ChemSusChem, 14(1), 56-72. https://doi.org/10.1002/cssc.202002044
  5. Dauvergne, P. 2018. Why is the global governance of plastic failing the oceans?. Global Environmental Change, 51, 22-31. https://doi.org/10.1016/j.gloenvcha.2018.05.002
  6. do Val Siqueira, L., Arias, C. I. L. F., Maniglia, B. C., & Tadini, C. C. 2021. Starch-based biodegradable plastics: Methods of production, challenges and future perspectives. Current Opinion in Food Science, 38, 122-130. https://doi.org/10.1016/j.cofs.2020.10.020
  7. Ghosh, K., & Jones, B. H. 2021. Roadmap to biodegradable plastics-current state and research needs. ACS Sustainable Chemistry & Engineering, 9(18), 6170-6187. https://doi.org/10.1021/acssuschemeng.1c00801
  8. Ijanu, E. M., Kamaruddin, M. A., & Norashiddin, F. A. 2020. Coffee processing wastewater treatment: a critical review on current treatment technologies with a proposed alternative. Applied Water Science, 10(1), 1-11. https://doi.org/10.1007/s13201-019-1058-x
  9. Saratale, G. D., Bhosale, R., Pugazendhi, A., Mahmoud, E., Sirohi, R., Bhatia, S. K., ... & Kumar, G. 2020. A review on valorization of spent coffee grounds (SCG) towards biopolymers and biocatalysts production. Bioresource technology, 123800.
  10. Janissen, B., & Huynh, T. 2018. Chemical composition and value-adding applications of coffee industry by-products: A review. Resources, Conservation and Recycling, 128, 110-117. https://doi.org/10.1016/j.resconrec.2017.10.001
  11. Wu, C. S. 2015. Renewable resource-based green composites of surface-treated spent coffee grounds and polylactide: Characterisation and biodegradability. Polymer Degradation and Stability, 121, 51-59. https://doi.org/10.1016/j.polymdegradstab.2015.08.011
  12. Essabir, H., Raji, M., Laaziz, S. A., Rodrique, D., & Bouhfid, R. 2018. Thermo-mechanical performances of polypropylene biocomposites based on untreated, treated and compatibilized spent coffee grounds. Composites Part B: Engineering, 149, 1-11. https://doi.org/10.1016/j.compositesb.2018.05.020
  13. Rasal, R. M., Janorkar, A. V., & Hirt, D. E. 2010. Poly (lactic acid) modifications. Progress in polymer science, 35(3), 338-356. https://doi.org/10.1016/j.progpolymsci.2009.12.003
  14. Nofar, M., Sacligil, D., Carreau, P. J., Kamal, M. R., & Heuzey, M. C. 2019. Poly (lactic acid) blends: Processing, properties and applications. International journal of biological macromolecules, 125, 307-360. https://doi.org/10.1016/j.ijbiomac.2018.12.002
  15. Wan, L., Zhou, S., & Zhang, Y. 2019. Parallel advances in improving mechanical properties and accelerating degradation to polylactic acid. International journal of biological macromolecules, 125, 1093-1102. https://doi.org/10.1016/j.ijbiomac.2018.12.148
  16. ISO 16929, Plastics - determination of the degree of disintegration of plastic materials under defined composting conditions in a pilot-scale test. 2019.
  17. Frone, A. N., Berlioz, S., Chailan, J. F., & Panaitescu, D. M. 2013. Morphology and thermal properties of PLA-cellulose nanofibers composites. Carbohydrate polymers, 91(1), 377-384. https://doi.org/10.1016/j.carbpol.2012.08.054
  18. Suksut, B., & Deeprasertkul, C. 2011. Effect of nucleating agents on physical properties of poly (lactic acid) and its blend with natural rubber. Journal of Polymers and the Environment, 19(1), 288-296. https://doi.org/10.1007/s10924-010-0278-9
  19. Gaidukova, G., Platnieks, O., Aunins, A., Barkane, A., Ingrao, C., & Gaidukovs, S. 2021. Spent coffee waste as a renewable source for the production of sustainable poly (butylene succinate) biocomposites from a circular economy perspective. RSC advances, 11(30), 18580-18589. https://doi.org/10.1039/D1RA03203H
  20. Sanchez-Acosta, D., Rodriguez-Uribe, A., Alvarez-Chavez, C. R., Mohanty, A. K., Misra, M., Lopez-Cervantes, J., & Madera-Santana, T. J. 2019. Physicochemical characterization and evaluation of pecan nutshell as biofiller in a matrix of poly (lactic acid). Journal of Polymers and the Environment, 27(3), 521-532. https://doi.org/10.1007/s10924-019-01374-6
  21. Chuayjuljit, S., Wongwaiwattanakul, C., Chaiwutthinan, P., & Prasassarakich, P. 2017. Biodegradable poly (lactic acid)/poly (butylene succinate)/wood flour composites: Physical and morphological properties. Polymer Composites, 38(12), 2841-2851. https://doi.org/10.1002/pc.23886
  22. Feng, Y., Ashok, B., Madhukar, K., Zhang, J., Zhang, J., Reddy, K. O., & Rajulu, A. V. 2014. Preparation and characterization of polypropylene carbonate bio-filler (eggshell powder) composite films. International Journal of Polymer Analysis and Characterization, 19(7), 637-647. https://doi.org/10.1080/1023666X.2014.953747
  23. Castro-Aguirre, E., Iniguez-Franco, F., Samsudin, H., Fang, X., & Auras, R. 2016. Poly (lactic acid)-Mass production, processing, industrial applications, and end of life. Advanced drug delivery reviews, 107, 333-366. https://doi.org/10.1016/j.addr.2016.03.010
  24. Valentina, I., Haroutioun, A., Fabrice, L., Vincent, V., & Roberto, P. 2018. Poly (lactic acid)-based nanobiocomposites with modulated degradation rates. Materials, 11(10), 1943. https://doi.org/10.3390/ma11101943
  25. Wang, Y. P., Xiao, Y. J., Duan, J., Yang, J. H., Wang, Y., & Zhang, C. L. (2016). Accelerated hydrolytic degradation of poly (lactic acid) achieved by adding poly (butylene succinate). Polymer Bulletin, 73(4), 1067-1083. https://doi.org/10.1007/s00289-015-1535-9
  26. da Silva, A. P., Pereira, M. D. P., Passador, F. R., & Montagna, L. S. 2020. PLA/Coffee Grounds Composites: A Study of Photodegradation and Biodegradation in Soil. In Macromolecular Symposia (Vol. 394, No. 1, p. 2000091). https://doi.org/10.1002/masy.202000091