Acknowledgement
The first author was supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education(NRF-2020R1I1A1A01069868) and a Korea University Grant. The second author was supported by NRF-2019R1A2C1002786 and the College of Education, Korea University Grant.
References
- J.-H. Ahn and S.-H. Kwon, Some explicit zero-free regions for Hecke L-functions, J. Number Theory 145 (2014), 433-473. https://doi.org/10.1016/j.jnt.2014.06.008
- J.-H. Ahn and S.-H. Kwon, An explicit upper bound for the least prime ideal in the Chebotarev density theorem, Ann. Inst. Fourier (Grenoble) 69 (2019), no. 3, 1411-1458. https://doi.org/10.5802/aif.3274
- J.-H. Ahn and S.-H. Kwon, Lower estimates for the prime ideal of degree one counting function in the Chebotarev density theorem, Acta Arith. 191 (2019), no. 3, 289-307. https://doi.org/10.4064/aa180427-18-12
- S. Das, An explicit version of Chebotarev's density theorem, MSc Thesis, Dec. 2020.
- M. Deuring, Uber den Tschebotareffschen Dichtigkeitssatz, Math. Ann. 110 (1935), no. 1, 414-415. https://doi.org/10.1007/BF01448036
- H. Kadiri, N. Ng, and P.-J. Wong, The least prime ideal in the Chebotarev density theorem, Proc. Amer. Math. Soc. 147 (2019), no. 6, 2289-2303. https://doi.org/10.1090/proc/14384
- H. Kadiri and P. J. Wong, Primes in the Chebotarev density theorem for all number fields (with an Appendix by Andrew Fiori), to appear in Journal of Number Theory. https://doi.org/10.1016/j.jnt.2022.03.012
- J. C. Lagarias, H. L. Montgomery, and A. M. Odlyzko, A bound for the least prime ideal in the Chebotarev density theorem, Invent. Math. 54 (1979), no. 3, 271-296. https://doi.org/10.1007/BF01390234
- J. C. Lagarias and A. M. Odlyzko, Effective versions of the Chebotarev density theorem, in Algebraic number fields: L-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975), 409-464, Academic Press, London, 1977.
- C. R. MacCluer, A reduction of the Cebotarev density theorem to the cyclic case, Acta Arith. 15 (1968), 45-47. https://doi.org/10.4064/aa-15-1-45-47
- J. Maynard, On the Brun-Titchmarsh theorem, Acta Arith. 157 (2013), no. 3, 249-296. https://doi.org/10.4064/aa157-3-3
- H. L. Montgomery and R. C. Vaughan, The large sieve, Mathematika 20 (1973), 119-134. https://doi.org/10.1112/S0025579300004708
- H. M. Stark, Some effective cases of the Brauer-Siegel theorem, Invent. Math. 23 (1974), 135-152. https://doi.org/10.1007/BF01405166
- J. Thorner and A. Zaman, An explicit bound for the least prime ideal in the Chebotarev density theorem, Algebra Number Theory 11 (2017), no. 5, 1135-1197. https://doi.org/10.2140/ant.2017.11.1135
- J. Thorner and A. Zaman, A Chebotarev variant of the Brun-Titchmarsh theorem and bounds for the Lang-Trotter conjectures, Int. Math. Res. Not. IMRN 2018 (2018), no. 16, 4991-5027. https://doi.org/10.1093/imrn/rnx031
- N. Tschebotareff, Die Bestimmung der Dichtigkeit einer Menge von Primzahlen, welche zu einer gegebenen Substitutionsklasse gehoren, Math. Ann. 95 (1926), no. 1, 191-228. https://doi.org/10.1007/BF01206606
- A. Weiss, The least prime ideal, J. Reine Angew. Math. 338 (1983), 56-94. https://doi.org/10.1515/crll.1983.338.56
- B. Winckler, Theoreme de Chebotarev effectif, arXiv:1311.5715v1 [math.NT] 22 Nov. 2013.
- B. Winckler, Intersection arithmetique et probleme de Lehmer elliptique, These, Universite de Bordeaux, 2015.
- A. A. Zaman, Analytic estimates for the Chebotarev density theorem and their applications, Ph.D. thesis, Uinversity of Toronto, 2017.