DOI QR코드

DOI QR Code

A GENERALIZATION OF MAYNARD'S RESULTS ON THE BRUN-TITCHMARSH THEOREM TO NUMBER FIELDS

  • Received : 2021.06.22
  • Accepted : 2022.06.28
  • Published : 2022.09.01

Abstract

Maynard proved that there exists an effectively computable constant q1 such that if q ≥ q1, then $\frac{{\log}\;q}{\sqrt{q}{\phi}(q)}Li(x){\ll}{\pi}(x;\;q,\;m)<\frac{2}{{\phi}(q)}Li(x)$ for x ≥ q8. In this paper, we will show the following. Let 𝛿1 and 𝛿2 be positive constants with 0 < 𝛿1, 𝛿2 < 1 and 𝛿1 + 𝛿2 > 1. Assume that L ≠ ℚ is a number field. Then there exist effectively computable constants c0 and d1 such that for dL ≥ d1 and x ≥ exp (326n𝛿1L(log dL)1+𝛿2), we have $$\|{\pi}_C(x)-\frac{{\mid}C{\mid}}{{\mid}G{\mid}}Li(x)\|\;{\leq}\;\(1-c_0\frac{1og\;d_L}{d^{7.072}_L}\)\;\frac{{\mid}C{\mid}}{{\mid}G{\mid}}Li(x)$$.

Keywords

Acknowledgement

The first author was supported by Basic Science Research Program through the National Research Foundation of Korea funded by the Ministry of Education(NRF-2020R1I1A1A01069868) and a Korea University Grant. The second author was supported by NRF-2019R1A2C1002786 and the College of Education, Korea University Grant.

References

  1. J.-H. Ahn and S.-H. Kwon, Some explicit zero-free regions for Hecke L-functions, J. Number Theory 145 (2014), 433-473. https://doi.org/10.1016/j.jnt.2014.06.008
  2. J.-H. Ahn and S.-H. Kwon, An explicit upper bound for the least prime ideal in the Chebotarev density theorem, Ann. Inst. Fourier (Grenoble) 69 (2019), no. 3, 1411-1458. https://doi.org/10.5802/aif.3274
  3. J.-H. Ahn and S.-H. Kwon, Lower estimates for the prime ideal of degree one counting function in the Chebotarev density theorem, Acta Arith. 191 (2019), no. 3, 289-307. https://doi.org/10.4064/aa180427-18-12
  4. S. Das, An explicit version of Chebotarev's density theorem, MSc Thesis, Dec. 2020.
  5. M. Deuring, Uber den Tschebotareffschen Dichtigkeitssatz, Math. Ann. 110 (1935), no. 1, 414-415. https://doi.org/10.1007/BF01448036
  6. H. Kadiri, N. Ng, and P.-J. Wong, The least prime ideal in the Chebotarev density theorem, Proc. Amer. Math. Soc. 147 (2019), no. 6, 2289-2303. https://doi.org/10.1090/proc/14384
  7. H. Kadiri and P. J. Wong, Primes in the Chebotarev density theorem for all number fields (with an Appendix by Andrew Fiori), to appear in Journal of Number Theory. https://doi.org/10.1016/j.jnt.2022.03.012
  8. J. C. Lagarias, H. L. Montgomery, and A. M. Odlyzko, A bound for the least prime ideal in the Chebotarev density theorem, Invent. Math. 54 (1979), no. 3, 271-296. https://doi.org/10.1007/BF01390234
  9. J. C. Lagarias and A. M. Odlyzko, Effective versions of the Chebotarev density theorem, in Algebraic number fields: L-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975), 409-464, Academic Press, London, 1977.
  10. C. R. MacCluer, A reduction of the Cebotarev density theorem to the cyclic case, Acta Arith. 15 (1968), 45-47. https://doi.org/10.4064/aa-15-1-45-47
  11. J. Maynard, On the Brun-Titchmarsh theorem, Acta Arith. 157 (2013), no. 3, 249-296. https://doi.org/10.4064/aa157-3-3
  12. H. L. Montgomery and R. C. Vaughan, The large sieve, Mathematika 20 (1973), 119-134. https://doi.org/10.1112/S0025579300004708
  13. H. M. Stark, Some effective cases of the Brauer-Siegel theorem, Invent. Math. 23 (1974), 135-152. https://doi.org/10.1007/BF01405166
  14. J. Thorner and A. Zaman, An explicit bound for the least prime ideal in the Chebotarev density theorem, Algebra Number Theory 11 (2017), no. 5, 1135-1197. https://doi.org/10.2140/ant.2017.11.1135
  15. J. Thorner and A. Zaman, A Chebotarev variant of the Brun-Titchmarsh theorem and bounds for the Lang-Trotter conjectures, Int. Math. Res. Not. IMRN 2018 (2018), no. 16, 4991-5027. https://doi.org/10.1093/imrn/rnx031
  16. N. Tschebotareff, Die Bestimmung der Dichtigkeit einer Menge von Primzahlen, welche zu einer gegebenen Substitutionsklasse gehoren, Math. Ann. 95 (1926), no. 1, 191-228. https://doi.org/10.1007/BF01206606
  17. A. Weiss, The least prime ideal, J. Reine Angew. Math. 338 (1983), 56-94. https://doi.org/10.1515/crll.1983.338.56
  18. B. Winckler, Theoreme de Chebotarev effectif, arXiv:1311.5715v1 [math.NT] 22 Nov. 2013.
  19. B. Winckler, Intersection arithmetique et probleme de Lehmer elliptique, These, Universite de Bordeaux, 2015.
  20. A. A. Zaman, Analytic estimates for the Chebotarev density theorem and their applications, Ph.D. thesis, Uinversity of Toronto, 2017.