DOI QR코드

DOI QR Code

Isolation and Cytotoxic Potency of Endophytic Fungi Associated with Dysosma difformis, a Study for the Novel Resources of Podophyllotoxin

  • Hoa Thi Tran (Institute of Biotechnology, Vietnam Academy of Science and Technology) ;
  • Giang Thu Nguyen (Institute of Biotechnology, Vietnam Academy of Science and Technology) ;
  • Hong Ha Thi Nguyen (Institute of Biotechnology, Vietnam Academy of Science and Technology) ;
  • Huyen Thi Tran (Institute of Biotechnology, Vietnam Academy of Science and Technology) ;
  • Quang Hong Tran (Vietnam Academy of Science and Technology, Graduate University of Science and Technology) ;
  • Quang Ho Tran (Institute of Biotechnology, Vietnam Academy of Science and Technology) ;
  • Ngoc Thi Ninh (Institute of Marine Biochemistry, Vietnam Academy of Science and Technology) ;
  • Phat Tien Do (Institute of Biotechnology, Vietnam Academy of Science and Technology) ;
  • Ha Hoang Chu (Institute of Biotechnology, Vietnam Academy of Science and Technology) ;
  • Ngoc Bich Pham (Institute of Biotechnology, Vietnam Academy of Science and Technology)
  • Received : 2022.06.27
  • Accepted : 2022.09.14
  • Published : 2022.10.31

Abstract

Endophytic fungi are promising sources for the production of podophyllotoxin-an important anticancer compound, replacing depleted medical plants. In this study, the endophytes associated with Dysosma difformis-an ethnomedicinal plant species were isolated to explore novel sources of podophyllotoxin. Fifty-three endophytic fungi were isolated and identified by morphological observation and ITS-based rDNA sequencing, assigning them to 27 genera in 3 divisions. Fusarium was found the most prevalent genus with a colonization frequency of 11.11%, followed by Trametes (9.26%) and Penicillium (7.41%). Phylogenetic trees were constructed for the endophytic fungi community in two collection sites, Ha Giang and Lai Chau, revealing the adaptation of the species to the specific tissues and habitats. Cytotoxic activity of endophytic fungal extracts was investigated on cancer cell lines such as SK-LU-1, HL-60, and HepG2, demonstrating strong anti-cancer activity of six isolates belonging to Penicillium, Trametes, Purpureocillium, Aspergillus, and Ganoderma with IC50 value of lower than 10 ㎍/mL. The presence of podophyllotoxin was indicated in Penicillium, Trametes, Aspergillus and for the first time in Purpureocillium and Ganoderma via high-performance liquid chromatography, which implied them as a potential source of this anticancer compound.

Keywords

Acknowledgement

The authors are grateful to Bon Ngoc Trinh from the Vietnamese Academy of Forest Sciences and Thanh Huong Thi Nguyen from the Institute of Ecology and Biological Resources for the identification of D. difformis. We also thank Dr. Thao Thi Do for the cytotoxic assay.

References

  1. Gakuubi MM, Munusamy M, Liang ZX, et al. Fungal endophytes: a promising frontier for discovery of novel bioactive compounds. J Fungi. 2021;7(10):786.
  2. Sahu PK, Mishra S. Effect of hybridization on endophytes: the endo-microbiome dynamics. Symbiosis. 2021;84(3):369-377. https://doi.org/10.1007/s13199-021-00760-w
  3. Mishra S, Sahu PK, Agarwal V, et al. Exploiting endophytic microbes as micro-factories for plant secondary metabolite production. Appl Microbiol Biotechnol. 2021;105(18):6579-6596.
  4. Saha P, Talukdar A, Das Choudhury MD, et al. Bioprospecting for fungal-endophytederived natural products for drug discovery. Switzerland: Springer; 2016. p. 35-49.
  5. Uzma F, Mohan CD, Hashem A, et al. Endophytic fungi-alternative sources of cytotoxic compounds : a review. Front Pharmacol. 2018;9:1-37. https://doi.org/10.3389/fphar.2018.00001
  6. Germaine K, Keogh E, Garcia-cabellos G, et al. Colonisation of poplar trees by gfp expressing bacterial endophytes. FEMS Microbiol Ecol. 2004;48(1):109-118. https://doi.org/10.1016/j.femsec.2003.12.009
  7. Tan RX, Zou WX. Endophytes: a rich source of functional metabolites. Nat Prod Rep. 2001;18(4):448-459. https://doi.org/10.1039/b100918o
  8. Howitz KT, Sinclair DA. Xenohormesis: sensing the chemical cues of other species. Cell. 2008;133(3):387-391. https://doi.org/10.1016/j.cell.2008.04.019
  9. Kusari S, Singh S, Jayabaskaran C. Rethinking production of Taxol® (paclitaxel) using endophyte biotechnology. Trends Biotechnol. 2014;32(6):304-311. https://doi.org/10.1016/j.tibtech.2014.03.011
  10. Eyberger AL, Dondapati R, Porter JR, et al. Endophyte fungal isolates from Podophyllum peltatum produce podophyllotoxin. J Nat Prod. 2006;69:8-11.
  11. Tan X, Zhou Y, Zhou X, et al. Diversity and bioactive potential of culturable fungal endophytes of Dysosma versipellis; a rare medicinal plant endemic to China. Sci Rep. 2018;8(1):9.
  12. Nadeem M. Fusarium solani, P1, a new endophytic podophyllotoxin-producing fungus from roots of Podophyllum hexandrum. African J Microbiol Res. 2012;6:2493-2499.
  13. Kusari S, Lamshoft M, Spiteller M. € Aspergillus fumigatus Fresenius, an endophytic fungus from Juniperus communis L. Horstmann as a novel source of the anticancer pro-drug deoxypodophyllotoxin. J Appl Microbiol. 2009;107(3):1019-1030. https://doi.org/10.1111/j.1365-2672.2009.04285.x
  14. Liang Z, Zhang J, Zhang X, et al. Endophytic fungus from Sinopodophyllum emodi (Wall.) Ying that produces podophyllotoxin. J Chromatogr Sci. 2016;54(2):175-178.
  15. Xianzhi Y, Shiping G, Lingqi Z, et al. Select of producing podophyllotoxin endophytic fungi from podophyllin plant. Nat Prod Res Dev. 2003;15:419-422.
  16. Thanh B, Van Anh NT, Van Ha CTT, et al. A new 2, 3-Dioxygenated flavanone and other constituents from Dysosma versipellis. Rec. Nat. Prod. 2022;1:84-91.
  17. Nguyen Lan Dung. Fungi. Hanoi, Vietnam: Science and Engineering; 1982. p. 1-266.
  18. Klich MA. Identification of common Aspergillus species. Utrecht, the Nethrlands: Amer Society for Microbiology. 2002;2002:1-116.
  19. Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870-1874. https://doi.org/10.1093/molbev/msw054
  20. Skehan P, Storeng R, Scudiero D, et al. New colorimetric cytotoxicity assay for. J Natl Cancer Inst. 1990;82(13):1107-1112. https://doi.org/10.1093/jnci/82.13.1107
  21. Hughes JP, Rees SS, Kalindjian SB, et al. Principles of early drug discovery. Br J Pharmacol. 2011;162(6):1239-1249. https://doi.org/10.1111/j.1476-5381.2010.01127.x
  22. Gupta DK, Verma MK, Lal S, et al. Extraction studies of Podophyllum hexandrum using conventional and nonconventional methods by HPLC-UV-DAD. J Liq Chromatogr Relat Technol. 2014;37(2):259-273. https://doi.org/10.1080/10826076.2012.745134
  23. Alabsi AM, Lim KL, Paterson IC, et al. Cell cycle arrest and apoptosis induction via modulation of mitochondrial integrity by bcl-2 family members and caspase dependence in Dracaena cinnabari-treated H400 human oral squamous cell carcinoma. Biomed Res Int. 2016;2016:4904016-4904013.
  24. Ghareeb MA, Hussein AH, Hassan MFM, et al. Antioxidant and cytotoxic activities of Tectona grandis linn. leaves. Int J Phytopharm. 2014;5:143-157.
  25. Ramasamy S, Wahab N, Zainal Abidin N, et al. Growth inhibition of human gynecologic and Colon cancer cells by Phyllanthus watsonii through apoptosis induction. PLoS One. 2012;7(4):e34793.
  26. Huang JX, Zhang J, Zhang XR, et al. Mucor fragilis as a novel source of the key pharmaceutical agents podophyllotoxin and kaempferol. Pharm Biol. 2014;52(10):1237-1243.
  27. Bazaldua C, Cardoso-taketa A, Trejo-tapia G, et al. Improving the production of podophyllotoxin in hairy roots of Hyptis suaveolens induced from regenerated plantlets. PLoS One. 2019;14(9):e0222464-20.
  28. Mishra N, Gupta AP, Singh B, et al. Ahuja paramvir S. A rapid determination of podophyllotoxin in Podophyllum hexandrum by reverse phase high performance thin layer chromatography a rapid determination of podophyllotoxin. J Liq Chromatogr Relat Technol. 2005;28(5):677-691. https://doi.org/10.1081/JLC-200048886
  29. Zhang J, Shi SY, Peng MJ, et al. Simultaneous determination of five active compounds from Dysosma difformis roots by HPLC. J Liq Chromatogr Relat Technol. 2014;37(9):1226-1236. https://doi.org/10.1080/10826076.2013.765453
  30. Naranjo-Ortiz MA, Gabaldon T. Fungal evolution: diversity, taxonomy and phylogeny of the Fungi. Biol Rev Camb Philos Soc. 2019;94(6):2101-2137. https://doi.org/10.1111/brv.12550
  31. Gupta S, Chaturvedi P, Kulkarni MG, et al. A critical review on exploiting the pharmaceutical potential of plant endophytic fungi. Biotechnol Adv. 2020;39:107462.
  32. Lee JH, Zhang C, Ko JY, et al. Evaluation on anticancer effect against HL-60 cells and toxicity in vitro and in vivo of the phenethyl acetate isolated from a marine bacterium Streptomyces griseus. Fish Aquat Sci. 2015;18(1):35-44.
  33. Tayarani-Najaran Z, Makki FS, Alamolhodaei NS, et al. Cytotoxic and apoptotic effects of different extracts of Artemisia biennis willd. On K562 and HL-60 cell lines. Iran J Basic Med Sci. 2017;20(2):166-171.
  34. Nguyen HT, Ho DV, Nguyen Q, et al. A. Cytotoxic evaluation of compounds isolated from the aerial parts of Hedyotis pilulifera and methanol extract of Inonotus obliquus. Nat Prod Commun. 2018;13:939-941.
  35. Rahaman MS, Siraj MA, Sultana S, et al. Molecular phylogenetics and biological potential of fungal endophytes from plants of the sundarbans mangrove. Front Microbiol. 2020;11:1-15. https://doi.org/10.3389/fmicb.2020.00001
  36. Torres-mendoza D, Ortega HE. Cubilla-rios L. Patents on endophytic fungi related to secondary metabolites and biotransformation applications. J Fungi. 2020;6:1-25.
  37. Puri SC, Nazir A, Chawla R, et al. The endophytic fungus trametes hirsuta as a novel alternative source of podophyllotoxin and related aryl tetralin lignans. J Biotechnol. 2006;122(4):494-510. https://doi.org/10.1016/j.jbiotec.2005.10.015
  38. Wachtel-Galor S, Yuen J, Buswell JA, et al. Ganoderma lucidum (Lingzhi or Reishi): a medicinal mushroom. In Benzie IFF W-GS, editor. Herbal medicine: biomolecular and clinical aspects. 2nd ed. Boca Raton (FL): CRC Press/Taylor & Francis; 2011.
  39. Mohtar W. Production and bioactivity of Ganoderma lucidum Bccm 31549 exopolysaccharide using submerged liquid fermentation. Scotland: University of Strathclyde; 2016. p. 9-33.
  40. Lenta BN, Ngatchou J, Frese M, et al. Purpureone, an antileishmanial ergochrome from the endophytic fungus Purpureocillium lilacinum. Z Naturforsch. 2016;71(11):1159-1167.