DOI QR코드

DOI QR Code

Mitochondrial Effects on the Physiological Characteristics of Lentinula edodes

  • Minseek Kim (Department of Biomedical Bigdata (BK4 Plus) and Research Institute of Life Sciences, Gyeongsang National University) ;
  • Seong-Hyeok Yang (Department of Biomedical Bigdata (BK4 Plus) and Research Institute of Life Sciences, Gyeongsang National University) ;
  • Hui-Gang Han (Department of Biomedical Bigdata (BK4 Plus) and Research Institute of Life Sciences, Gyeongsang National University) ;
  • Eunbi Kim (Department of Biomedical Bigdata (BK4 Plus) and Research Institute of Life Sciences, Gyeongsang National University) ;
  • Sinil Kim (Department of Biomedical Bigdata (BK4 Plus) and Research Institute of Life Sciences, Gyeongsang National University) ;
  • Youn-Lee Oh (Mushroom Science Division, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Hyeon-Su Ro (Department of Biomedical Bigdata (BK4 Plus) and Research Institute of Life Sciences, Gyeongsang National University)
  • Received : 2022.09.01
  • Accepted : 2022.10.18
  • Published : 2022.10.31

Abstract

In the mating of filamentous basidiomycetes, dikaryotic mycelia are generated through the reciprocal movement of nuclei to a monokaryotic cytoplasm where a nucleus of compatible mating type resides, resulting in the establishment of two different dikaryotic strains having the same nuclei but different mitochondria. To better understand the role of mitochondria in mushrooms, we created four sets of dikaryotic strains of Lentinula edodes, including B2×E13 (B2 side) and B2×E13 (E13 side), B5×E13 (B5 side) and B5×E13 (E13 side), E8×H3 (E8 side) and E8×H3 (H3 side), and K3×H3 (K3 side) and K3×H3 (H3 side). The karyotypes and mitochondrial types of the dikaryotic strains were successfully identified by the A mating type markers and the mitochondrial variable length tandem repeat markers, respectively. Comparative analyses of the dikaryotic strains on the mycelial growth, substrate browning, fruiting characteristics, and mitochondrial gene expression revealed that certain mitochondria are more effective in the mycelial growth and the production of fruiting body, possibly through the activated energy metabolism. Our findings indicate that mitochondria affect the physiology of dikaryotic strains having the same nuclear information and therefore a selection strategy aimed at mitochondrial function is needed in the development of new mushroom strain.

Keywords

Acknowledgement

This work was supported by grants from the New Breeding Technologies Development Program [Project No. PJ01697601], Rural Development Administration (RDA), Republic of Korea.

References

  1. Chan DC. Mitochondria: Dynamic organelles in disease, aging, and development. Cell. 2006;125(7):1241-1252. https://doi.org/10.1016/j.cell.2006.06.010
  2. Sullivan LB, Gui DY, Hosios AM, et al. Supporting aspartate biosynthesis is an essential function of respiration in proliferating cells. Cell. 2015;162(3):552-563. https://doi.org/10.1016/j.cell.2015.07.017
  3. Diebold LP, Gil HJ, Gao P, et al. Mitochondrial complex III is necessary for endothelial cell proliferation during angiogenesis. Nat Metab. 2019;1(1):158-171. https://doi.org/10.1038/s42255-018-0011-x
  4. Andersson SG, Karlberg O, Canback B, et al. On the origin of mitochondria: a genomics perspective. Philos Trans R Soc Lond B Biol Sci. 2003;358(1429):165-167. https://doi.org/10.1098/rstb.2002.1193
  5. Nunnari J, Marshall WF, Straight A, et al. Mitochondrial transmission during mating in Saccharomyces cerevisiae is determined by mitochondrial fusion and fission and the intramitochondrial segregation of mitochondrial DNA. Mol Biol Cell. 1997;8(7):1233-1242.
  6. Berger KH, Yaffe MP. Mitochondrial DNA inheritance in Saccharomyces cerevisiae. Trends Microbiol. 2000;8(11):508-513.
  7. Xu J, Ali RY, Gregory DA, et al. Uniparental mitochondrial transmission in sexual crosses in Cryptococcus neoformans. Curr Microbiol. 2000;40(4):269-273. https://doi.org/10.1007/s002849910053
  8. Yan Z, Xu J. Mitochondria are inherited from the MATa parent in crosses of the basidiomycete fungus Cryptococcus neoformans. Genetics. 2003;163(4):1315-1325. https://doi.org/10.1093/genetics/163.4.1315
  9. Yan Z, Hull C, Sun S, et al. The mating typespecific homeodomain genes SXI1a and SXI2a coordinately control uniparental mitochondrial inheritance in Cryptococcus neoformans. Curr Genet. 2007;51(3):187-195.
  10. Gyawali R, Lin X. Prezygotic and postzygotic control of uniparental mitochondrial DNA inheritance in Cryptococcus neoformans. mBio. 2013;4(2):00112-00113.
  11. Kues U. Life history and developmental processes in the basidiomycete Coprinus cinereus. Microbiol Mol Biol Rev. 2000;64(2):316-353. https://doi.org/10.1128/MMBR.64.2.316-353.2000
  12. Ha B, Kim S, Kim M, et al. Diversity of a mating type in Lentinula edodes and mating type preference in domesticated strains. J Microbiol. 2018; 56(6):416-425. https://doi.org/10.1007/s12275-018-8030-6
  13. Ha B, Moon YJ, Song Y, et al. Molecular analysis of B mating type diversity in Lentinula edodes. Sci Hortic. 2019;243:55-63.
  14. Kim S, Song Y, Ha B, et al. Variable number tandem repeats in the mitochondrial DNA of Lentinula edodes. Genes. 2019;10(7):542.
  15. Ryan MT, Hoogenraad NJ. Mitochondrial-nuclear communications. Annu Rev Biochem. 2007;76:701-722. https://doi.org/10.1146/annurev.biochem.76.052305.091720
  16. Contamine V, Picard M. Maintenance and integrity of the mitochondrial genome: a plethora of nuclear genes in the budding yeast. Microbiol Mol Biol Rev. 2000;64(2):281-315. https://doi.org/10.1128/MMBR.64.2.281-315.2000
  17. Frechin M, Enkler L, Tetaud E, et al. Expression of nuclear and mitochondrial genes encoding ATP synthase is synchronized by disassembly of a multisynthetase complex. Mol Cell. 2014;56(6):763-776. https://doi.org/10.1016/j.molcel.2014.10.015
  18. Yoo SI, Lee HY, Markkandan K, et al. Comparative transcriptome analysis identified candidate genes involved in mycelium browning in Lentinula edodes. BMC Genomics. 2019;20(1):121.
  19. Hong CP, Moon S, Yoo SI, et al. Functional analysis of a novel ABL (abnormal browning related to light) gene in mycelial brown film formation of Lentinula edodes. J Fungi. 2020;6(4):272.
  20. Osiewacz HD. Genes, mitochondria and aging in filamentous fungi. Ageing Res Rev. 2002;1(3):425-442. https://doi.org/10.1016/S1568-1637(02)00010-7
  21. Zorov DB, Juhaszova M, Sollott SJ. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev. 2014;94(3):909-950. https://doi.org/10.1152/physrev.00026.2013
  22. Denness L, McKenna JF, Segonzac C, et al. Cell wall damage-induced lignin biosynthesis is regulated by a reactive oxygen species- and jasmonic acid-dependent process in Arabidopsis. Plant Physiol. 2011;156(3):1364-1374.
  23. Eljebbawi A, Guerrero YDCR, Dunand C, et al. Highlighting reactive oxygen species as multitaskers in root development. iScience. 2021;24(1):101978.