DOI QR코드

DOI QR Code

Community of Endophytic Fungi from Alpine Conifers on Mt. Seorak

  • Ju-Kyeong Eo (Division of Ecological Applications Research, Bureau of Conservation Research, National Institute of Ecology) ;
  • Ahn-Heum Eom (Department of Biology Education, Korea National University of Education)
  • Received : 2022.06.21
  • Accepted : 2022.10.11
  • Published : 2022.10.31

Abstract

Endophytic fungi occupy various ecological niches, which reinforces their diversity. As few studies have investigated the endophytic fungi of alpine conifers, we focused on four species of alpine conifers in this study-Abies nephrolepis, Pinus pumila, Taxus cuspidata var. nana, and Thuja koraiensis-and examined them for endophytic fungi. A total of 108 endophytic fungi were isolated. There were four taxa in A. nephrolepis, 12 in P. pumila, 18 in T. cuspidata var. nana, and 17 in T. koraiensis; these were divided into five classes: Agaricomycetes (3.2%), Dothideomycetes (29.0%), Leotiomycetes (15.0%), Sordariomycetes (41.9%), and Orbiliomycetes (1.6%). The most prevalent fungi were Sydowia polyspora (22.7%) and Xylariaceae sp. (22.7%) in P. pumila, Phomopsis juglandina (16.1%) in T. cuspidate var. nana, and Thuja-endophytes sp. 1 (70.0%) in T. koraiensis. However, there was no dominant species growing in A. nephrolepis. Some host plants were analyzed using next-generation sequencing. We obtained 4618 reads for A. nephrolepis and 2268 reads for T. koraiensis. At the genus level, the top three endophytic fungi were Ophiostomataceae_uc (64.6%), Nectriaceae_uc (15.5%), and unclassified organism (18.0%) in A. nephrolepis and Nectriaceae_uc (41.9%), Ophiostomataceae_uc (41.8%), and Magnaporthaceae_uc (9.2%) in T. koraiensis. Our results show that there are different communities of endophytic fungi among different host plants, even if the host plants are in the same region. Such ecological niches are important in terms of the ecological restoration of alpine conifers.

Keywords

Acknowledgement

This study was supported with funds from the National Institute of Ecology under project Nos. NIE-C-2021-19 and NIE-C-2022-18 and the Ministry of Environment of Korea as part of ecological technology research.

References

  1. Carroll G. Fungal endophytes in stems and leaves: from latent pathogen to mutualistic symbiont. Ecology. 1988;69(1):2-9. https://doi.org/10.2307/1943154
  2. Arnold AE. Understanding the diversity of foliar endophytic fungi: progress, challenges, and frontiers. Fungal Biol Rev. 2007;21(2-3):51-66. https://doi.org/10.1016/j.fbr.2007.05.003
  3. Schulz B, Boyle C. The endophytic continuum. Mycol Res. 2005;109(6):661-686. https://doi.org/10.1017/S095375620500273X
  4. Bacon C, White J. Microbial endophytes. New York (NY): CRC Press; 2000.
  5. Rodriguez R, White J, Jr Arnold A, et al. Fungal endophytes: diversity and functional roles. New Phytol. 2009;182(2):314-330.
  6. Kane KH. Effects of endophyte infection on drought stress tolerance of Lolium perenne accessions from the mediterranean region. Environ Exp Botany. 2011;71:337-344.
  7. Rustamova N, Bozorov K, Efferth T, et al. Novel secondary metabolites from endophytic fungi: synthesis and biological properties. Phytochem Rev. 2020;19(2):425-448. https://doi.org/10.1007/s11101-020-09672-x
  8. AlSharari SS, Galal FH, Seufi AM. Composition and diversity of the culturable endophytic community of six stress-tolerant dessert plants grown in stressful soil in a hot dry desert region. J Fungi (Basel). 2022;8:241.
  9. Lee D-K, Kim J-U. Vulnerability assessment of Sub-Alpine vegetations by climate change in Korea. J Korean Env Res Reveg Tech. 2007;10:110-119.
  10. Hong M-P, Lee H-J, Chun Y-M, et al. Flora of Mt. Seorak, gangwon-do(1). Kor J Env Eco. 2010;24:436-486.
  11. Farjon A. Pinaceae: drawings and descriptions of the genera Abies, Cedrus, Pseudolarix, Keteleeria, Nothotsuga, Tsuga, Cathaya, Pseudotsuga, Larix and Picea. Konigstein: Koeltz Scientific Books; 1990.
  12. Lee J-H, Shin H-s, Cho HJ, et al. Subalpine conifer Forest communities. Seocheon: National Institute of Ecology; 2014.
  13. Eo J-K, Kim C-K, Lee HB, et al. Diversity of endophytic fungi isolated from Pinus densiflora and Larix kaempferi in Mt. Oser, Korea. Kor J Mycol. 2013;41(3):137-141. https://doi.org/10.4489/KJM.2013.41.3.137
  14. White TJ, Bruns T, Lee S, et al. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, et al., editors. PCR protocols: a guide to methods and applications. San Diego: Academic Press, Inc.; 1990. p. 315-322.
  15. Kumar S, Stecher G, Li M, et al. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35(6):1547-1549. https://doi.org/10.1093/molbev/msy096
  16. Shannon CE, Weaver W. A mathematical theory of communication. New York (NY): American Telephone and Telegraph Company; 1948.
  17. Bellemain E, Carlsen T, Brochmann C, et al. ITS as an environmental DNA barcode for fungi: an in silico approach reveals potential PCR biases. BMC Microbiol. 2010;10:189-198.
  18. Ondov BD, Bergman NH, Phillippy AM. Interactive metagenomic visualization in a web browser. BMC Bioinformatics. 2011;12(1):1-10. https://doi.org/10.1186/1471-2105-12-1
  19. Schloss PD, Westcott SL, Ryabin T, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75(23):7537-7541. https://doi.org/10.1128/AEM.01541-09
  20. Park S-H, Kim K-A, Ahn Y-T, et al. Comparative analysis of gut microbiota in elderly people of urbanized towns and longevity villages. BMC Microbiol. 2015;15(1):1-9.
  21. Kim C-K, Eo J-K, Eom A-H. Diversity of endophytic fuingi isolated from leaves of coniferous trees in Mt. Minjuji, Korea. Kor J Mycol. 2014;42(2):174-177. https://doi.org/10.4489/KJM.2014.42.2.174
  22. Eo J-K, Choi M-S, Eom A-H. Diversity of endophytic fungi isolated from Korean ginseng leaves. Mycobiology. 2014;42(2):147-151. https://doi.org/10.5941/MYCO.2014.42.2.147
  23. Eo J-K, Park E. Geographical patterns and biodiversity of endophytic fungi isolated from Scirpus L. s.l. in Korea. Kor J Myco. 2019;47:43-50.
  24. Hilt N, Fiedler K. Diversity and composition of Arctiidae moth ensembles along a successional gradient in the Ecuadorian Andes. Div Distrib. 2005;11(5):387-398. https://doi.org/10.1111/j.1366-9516.2005.00167.x
  25. Persoh D. Factors shaping community structure of endophytic fungi-evidence from the Pinus viscumsystem. Fungal Divers. 2013;60(1):55-69. https://doi.org/10.1007/s13225-013-0225-x
  26. Douanla-Meli C, Langer E, Talontsi Mouafo F. Fungal endophyte diversity and community patterns in healthy and yellowing leaves of Citrus limon. Fungal Ecol. 2013;6(3):212-222. https://doi.org/10.1016/j.funeco.2013.01.004
  27. Kim C-K, Eo J-K, Eom A-H. Diversity and seasonal variation of endophytic fungi isolated from three conifers in Mt. Taehwa, Korea. Mycobiology. 2013;41(2):82-85. https://doi.org/10.5941/MYCO.2013.41.2.82
  28. Talgo V, Chastagner G, Thomsen IM, et al. Sydowia polyspora associated with current season needle necrosis (CSNN) on true fir (Abies spp.). Fungal Biol. 2010;114(7):545-554. https://doi.org/10.1016/j.funbio.2010.04.005
  29. Ridout M, Newcombe G. Sydowia polyspora is both a foliar endophyte and a preemergent seed pathogen in Pinus ponderosa. Plant Dis. 2018;102(3):640-644. https://doi.org/10.1094/PDIS-07-17-1074-RE
  30. National Institue of Biological Resources. National list of species of the Korea (moss, liverwort). Incheon: National Institute of Biological Resources; 2011.
  31. Bazzicalupo AL, Balint M, Schmitt I. Comparison of ITS1 and ITS2 rDNA in 454 sequencing of hyperdiverse fungal communities. Fungal Ecol. 2013;6(1):102-109. https://doi.org/10.1016/j.funeco.2012.09.003