DOI QR코드

DOI QR Code

Characterization of Chitinolytic and Antifungal Activities in Marine-Derived Trichoderma bissettii Strains

  • Dawoon Chung (National Marine Biodiversity Institute of Korea) ;
  • Yong Min Kwon (National Marine Biodiversity Institute of Korea) ;
  • Ji Yeon Lim (National Marine Biodiversity Institute of Korea) ;
  • Seung Sub Bae (National Marine Biodiversity Institute of Korea) ;
  • Grace Choi (National Marine Biodiversity Institute of Korea) ;
  • Dae-Sung Lee (National Marine Biodiversity Institute of Korea)
  • Received : 2021.02.23
  • Accepted : 2022.07.20
  • Published : 2022.08.31

Abstract

Trichoderma fungi have been intensively studied for mycoparasitism, and the latter is closely related to their cell-wall degrading enzymes including chitinase. Here, we studied marine-derived Trichoderma spp., isolated from distinct sources and locations, for chitinolytic and antifungal activity. Based on morphological and phylogenetic analyses, two strains designated GJ-Sp1 and TOP-Co8 (isolated from a marine sponge and a marine alga, respectively) were identified as Trichoderma bissettii. This species has recently been identified as a closely related species to Trichoderma longibrachiatum. The extracellular crude enzymes of GJ-Sp1 and TOP-Co8 showed activities of chitobiosidase and b-N-acetylglucosaminidase (exochitinase) and chitotriosidase (endochitinase). The optimum chitinolytic activity of the crude enzymes was observed at 50 ℃, pH 5.0, 0-0.5% NaCl concentrations, and the activities were stable at temperatures ranging from 10 to 40 ℃ for 2 h. Moreover, the crude enzymes showed inhibitory activity against hyphal growth of two filamentous fungi Aspergillus flavus and Aspergillus niger. To the best of our knowledge, this is the first report of the chitinolytic and antifungal activity of T. bissettii.

Keywords

Acknowledgement

This work was supported by a grant from the National Marine Biodiversity Institute of Korea (MABIK, 2022M00600).

References

  1. Park MS, Bae KS, Yu SH. Two new species of Trichoderma associated with green mold of oyster mushroom cultivation in Korea. Mycobiology. 2006;34(3):111-113. https://doi.org/10.4489/MYCO.2006.34.3.111
  2. Guzman-Guzman P, Porras-Troncoso MD, Olmedo-Monfil V, et al. Trichoderma species: versatile plant symbionts. Phytopathology. 2019;109(1):6-16. https://doi.org/10.1094/PHYTO-07-18-0218-RVW
  3. Druzhinina IS, Kopchinskiy AG, Kubicek CP. The first 100 Trichoderma species characterized by molecular data. Mycoscience. 2006;47(2):55-64. https://doi.org/10.1007/S10267-006-0279-7
  4. Nicoletti R, Vinale F. Bioactive compounds from marine-derived Aspergillus, Penicillium, Talaromyces and Trichoderma species. Mar Drugs. 2018;16(11):408.
  5. Su D, Ding L, He S. Marine-derived Trichoderma species as a promising source of bioactive secondary metabolites. Mini Rev Med Chem. 2018;18(20):1702-1713. https://doi.org/10.2174/1389557518666180727130826
  6. Saba H, Vibhash D, Manisha M, et al. Trichoderma - a promising plant growth stimulator and biocontrol agent. Mycosphere. 2012;3(4):524-531. https://doi.org/10.5943/mycosphere/3/4/14
  7. Kubicek CP, Mach RL, Peterbauer CK, et al. Trichoderma: from genes to biocontrol. J Plant Pathol. 2001;83:11-23.
  8. Rathore AS, Gupta RD. Chitinases from bacteria to human: properties, applications, and future perspectives. Enzyme Res. 2015;2015:791907.
  9. Hamid R, Khan MA, Ahmad M, et al. Chitinases: an update. J Pharm Bioallied Sci. 2013;5(1):21-29.
  10. Gooday GW, Zhu WY, O'Donnell RW. What are the roles of chitinases in the growing fungus? FEMS Microbiol Lett. 1992;100(1-3):387-391. https://doi.org/10.1111/j.1574-6968.1992.tb05730.x
  11. Okongo RN, Puri AK, Wang Z, et al. Comparative biocontrol ability of chitinases from bacteria and recombinant chitinases from the thermophilic fungus Thermomyces lanuginosus. J Biosci Bioeng. 2019;127(6):663-671. https://doi.org/10.1016/j.jbiosc.2018.11.007
  12. Benhabiles M, Salah R, Lounici H, et al. Antibacterial activity of chitin, chitosan, and its oligomers prepared from shrimp shell waste. Food Hydrocoll. 2012;29(1):48-56.
  13. Pan XQ, Shih CC, Harday J. Chitinase induces lysis of MCF-7 cells in culture and of human breast cancer xenograft B11-2 in SCID mice. Anticancer Res. 2005;25(5):3167-3172.
  14. Tokoro A, Kobayashi M, Tatewaki N, et al. Protective effect of N-acetyl chitohexaose on Listeria monocytogenes infection in mice. Microbiol Immunol. 1989;33(4):357-367. https://doi.org/10.1111/j.1348-0421.1989.tb01983.x
  15. Tsukada K, Matsumoto T, Aizawa K, et al. Antimetastatic and growth-inhibitory effects of N-acetylchitohexaose in mice bearing Lewis lung carcinoma. Jpn J Cancer Res. 1990;81(3):259-265. https://doi.org/10.1111/j.1349-7006.1990.tb02559.x
  16. Baek JM, Howell DR, Kenerley CM. The role of an extracellular chitinase from Trichoderma virens Gv29-8 in the biocontrol of Rhizoctonia solani. Curr Genet. 1999;35(1):41-50. https://doi.org/10.1007/s002940050431
  17. Baldoni DB, Antoniolli ZI, Mazutti MA, et al. Chitinase production by Trichoderma koningiopsis UFSMQ40 using solid state fermentation. Braz J Microbiol. 2020;51(4):1897-1908. https://doi.org/10.1007/s42770-020-00334-w
  18. de la Cruz J, Hidalgo-Gallego A, Lora JM, et al. Isolation and characterization of three chitinases from Trichoderma harzianum. Eur J Biochem. 1992;206(3):859-867. https://doi.org/10.1111/j.1432-1033.1992.tb16994.x
  19. Klemsdal SS, Clarke JL, Hoell IA, et al. Molecular cloning, characterization, and expression studies of a novel chitinase gene (ech30) from the mycoparasite Trichoderma atroviride strain P1. FEMS Microbiol Lett. 2006;256(2):282-289. https://doi.org/10.1111/j.1574-6968.2006.00132.x
  20. Kovacs K, Szakacs G, Pusztahelyi T, et al. Production of chitinolytic enzymes with Trichoderma longibrachiatum IMI 92027 in solid substrate fermentation. Appl Biochem Biotechnol. 2004;118(1-3):189-204. https://doi.org/10.1385/ABAB:118:1-3:189
  21. Loc NH, Huy ND, Quang HT, et al. Characterisation and antifungal activity of extracellular chitinase from a biocontrol fungus, Trichoderma asperellum PQ34. Mycology. 2020;11(1):38-48. https://doi.org/10.1080/21501203.2019.1703839
  22. Omumasaba CA, Yoshida N, Ogawa K. Purification and characterization of a chitinase from Trichoderma viride. J Gen Appl Microbiol. 2001;47(2):53-61. https://doi.org/10.2323/jgam.47.53
  23. Abu-Tahon MA, Isaac GS. Anticancer and antifungal efficiencies of purified chitinase produced from Trichoderma viride under submerged fermentation. J Gen Appl Microbiol. 2020;66(1):32-40. https://doi.org/10.2323/jgam.2019.04.006
  24. Gal-Hemed I, Atanasova L, Komon-Zelazowska M, et al. Marine isolates of Trichoderma spp. as potential halotolerant agents of biological control for arid-zone agriculture. Appl Environ Microbiol. 2011;77(15):5100-5109. https://doi.org/10.1128/AEM.00541-11
  25. Pasqualetti M, Barghini P, Giovannini V, et al. High production of chitinolytic activity in halophilic conditions by a new marine strain of Clonostachys rosea. Molecules. 2019;24(10):1880.
  26. Riddell RW. Permanent stained mycological preparations obtained by slide culture. Mycologia. 1950;42(2):265-270. https://doi.org/10.1080/00275514.1950.12017830
  27. Gardes M, Bruns TD. ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Mol Ecol. 1993;2(2):113-118. https://doi.org/10.1111/j.1365-294X.1993.tb00005.x
  28. Carbone I, Kohn LM. A method for designing primer sets for speciation studies in filamentous ascomycetes. Mycologia. 1999;91(3):553-556. https://doi.org/10.1080/00275514.1999.12061051
  29. Jaklitsch WM, Komon M, Kubicek CP, et al. Hypocrea voglmayrii sp. nov. from the Austrian alps represents a new phylogenetic clade in Hypocrea/Trichoderma. Mycologia. 2005;97(6):1365-1378. https://doi.org/10.1080/15572536.2006.11832743
  30. Sandoval-Denis M, Sutton DA, Cano-Lira JF, et al. Phylogeny of the clinically relevant species of the emerging fungus Trichoderma and their antifungal susceptibilities. J Clin Microbiol. 2014;52(6):2112-2125. https://doi.org/10.1128/JCM.00429-14
  31. Tamura K, Peterson D, Peterson N, et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol. 2011;28(10):2731-2739. https://doi.org/10.1093/molbev/msr121
  32. Chung D, Baek K, Bae SS, et al. Identification and characterization of a marine-derived chitinolytic fungus, Acremonium sp. YS2-2. J Microbiol. 2019;57(5):372-380. https://doi.org/10.1007/s12275-019-8469-0
  33. Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem. 1959;31(3):426-428. https://doi.org/10.1021/ac60147a030
  34. Kwon YM, Choi HS, Lim JY, et al. Characterization of amylolytic activity by a marine-derived yeast Sporidiobolus pararoseus PHGra1. Mycobiology. 2020;48(3):195-203. https://doi.org/10.1080/12298093.2020.1763100
  35. Garrigues S, et al. Three antifungal proteins prom Penicillium expansum: different patterns of production and antifungal activity. Front Microbiol. 2018;9:2370.
  36. Jaklitsch WM, Voglmayr H. Biodiversity of Trichoderma (Hypocreaceae) in Southern Europe and macaronesia. Stud Mycol. 2015;80:1-87. https://doi.org/10.1016/j.simyco.2014.11.001
  37. Elmonem MA, van den Heuvel LP, Levtchenko EN. Immunomodulatory effects of chitotriosidase enzyme. Enzyme Res. 2016;2016:2682680.
  38. Kim K, Heo YM, Jang S, et al. Diversity of Trichoderma spp. in marine environments and their biological potential for sustainable industrial applications. Sustainability. 2020;12(10):4327.
  39. Hong J-H, Jang S, Heo YM, et al. Investigation of marine-derived fungal diversity and their exploitable biological activities. Mar Drugs. 2015;13(7):4137-4155. https://doi.org/10.3390/md13074137
  40. Stracquadanio C, Quiles JM, Meca G, et al. Antifungal activity of bioactive metabolites produced by Trichoderma asperellum and Trichoderma atroviride in liquid medium. JOF. 2020;6(4):263.
  41. Sadykova VS, Kurakov AV, Kuvarina AE, et al. Antimicrobial activity of fungi strains of Trichoderma from Middle siberia. Appl Biochem Microbiol. 2015;51(3):355-361.
  42. Leelavathi MS, Vani L, Reena P. Antimicrobial activity of Trichoderma harzianum against bacteria and fungi. Int J Curr Microbiol App Sci. 2014;3:96-103.
  43. Guo RF, Shi BS, Li DC, et al. Purification and characterization of a novel thermostable chitinase from Thermomyces lanuginosus SY2 and cloning of its encoding gene. Agric Sci China. 2008;7(12):1458-1465. https://doi.org/10.1016/S1671-2927(08)60403-4
  44. van Munster JM, van der Kaaij RM, Dijkhuizen L, et al. Biochemical characterization of Aspergillus niger CfcI, a glycoside hydrolase family 18 chitinase that releases monomers during substrate hydrolysis. Microbiology. 2012;158(8):2168-2179. https://doi.org/10.1099/mic.0.054650-0
  45. Velmurugan N, Kalpana D, Han JH, et al. A novel low temperature chitinase from the marine fungus Plectosphaerella sp. strain MF-1. Botanica Marina. 2011;54(1):75-81.
  46. Yang S, Fu X, Yan Q, et al. Biochemical characterization of a novel acidic exochitinase from Rhizomucor miehei with antifungal activity. J Agric Food Chem. 2016;64(2):461-469. https://doi.org/10.1021/acs.jafc.5b05127
  47. Yu G, Xie LQ, Li JT, et al. Isolation, partial characterization, and cloning of an extracellular chitinase from the entomopathogenic fungus Verticillium lecanii. Genet Mol Res. 2015;14(1):2275-2289. https://doi.org/10.4238/2015.March.27.13
  48. Deane EE, Whipps JM, Lynch JM, et al. The purification and characterization of a Trichoderma harzianum exochitinase. Biochim Biophys Acta. 1998;1383(1):101-110. https://doi.org/10.1016/S0167-4838(97)00183-0
  49. Kumar DP, Singh RK, Anupama PD, et al. Studies on exo-chitinase production from Trichoderma asperellum UTP-16 and its characterization. Ind J Microbiol. 2012;52(3):388-395.
  50. Sahai AS, Manocha MS. Chitinases of fungi and plants: their involvement in morphogenesis and host-parasite interaction. FEMS Microbiol Rev. 1993;11(4):317-338. https://doi.org/10.1111/j.1574-6976.1993.tb00004.x
  51. Hartl L, Zach S, Seidl-Seiboth V. Fungal chitinases: diversity, mechanistic properties and biotechnological potential. Appl Microbiol Biotechnol. 2012;93(2):533-543. https://doi.org/10.1007/s00253-011-3723-3
  52. Sood M, Kapoor D, Kumar V, et al. Trichoderma: the "secrets" of a multitalented biocontrol agent. Plants. 2020;9(6):762.