DOI QR코드

DOI QR Code

수소 안전밸브용 역화방지기의 성능 평가에 대한 수치해석 연구

A Numerical Study on the Flame Arrestor for Safety Valve of Hydrogen

  • 오승준 (동아대학교 고기능성밸브 기술지원센터) ;
  • 윤정환 (동아대학교 고기능성밸브 기술지원센터) ;
  • 김시범 (동아대학교 기계공학과) ;
  • 최정주 (동아대학교 기계공학과)
  • OH, SEUNG JUN (Technical Center for High-Performance Valve, Dong-A University) ;
  • YOON, JEONG HWAN (Technical Center for High-Performance Valve, Dong-A University) ;
  • KIM, SI POM (Department of Mechanical Engineering, Dong-A University) ;
  • CHOI, JEONGJU (Department of Mechanical Engineering, Dong-A University)
  • 투고 : 2022.05.11
  • 심사 : 2022.08.04
  • 발행 : 2022.08.30

초록

Hydrogen is one of the energy carriers and has high energy efficiency relative to mass. It is an eco-friendly fuel that makes only water (H2O) as a by-product after use. In order to use hydrogen conveniently and safely, development of production, storage and transfer technologies is required and attempts are being made to apply hydrogen as an energy source in various fields through the development of the technology. For transporting and storing hydrogen include high-pressure hydrogen gas storage, a type of storage technologies consist of cryogenic hydrogen liquid storage, hydrogen storage alloy, chemical storage by adsorbents and high-pressure hydrogen storage containers have been developed in a total of four stages. The biggest issue in charging high-pressure hydrogen gas which is a combustible gas is safety and the backfire prevention device is that prevents external flames from entering the tank and prevents explosion and is essential to use hydrogen safely. This study conducted a numerical analysis to analyze the performance of suppressing flame propagation of 2, 3 inch flame arrestor. As a result, it is determined that, where the flame arrestor is attached, the temperature would be lowered below the temperature of spontaneous combustion of hydrogen to suppress flame propagation.

키워드

과제정보

이 논문은 동아대학교 교내연구비 지원에 의하여 연구되었다.

참고문헌

  1. J. K. Yeom and J. H. Yoon, "Study of behavior characteristics of emulsified fuels with evaporative field", Trans. Korean Soc. Mech. Eng. B, Vol. 39, No. 3, 2015, pp. 237-243, doi: https://doi.org/10.3795/KSME-B.2015.39.3.237.
  2. J. K. Yeom and J. H. Yoon, "Basic study of spray-behavior characteristics of emulsified fuel", Trans. Korean Soc. Mech. Eng. B, Vol. 38, No. 9, 2014, pp. 763-771, doi: https://doi.org/10.3795/KSME-B.2014.38.9.763.
  3. M. Huo, S. Lin, H. Liu, and C. F. Lee, "Study on the spray an d combustion characteristics of water-emulsified diese l", Fuel, Vol. 123, 2014, pp. 218-229, doi: https://doi.org/10.1016/j.fuel.2013.12.035.
  4. S. Y. No, "Application of bio-oils from lignocellulosic biomass to transportation, heat and power generation-a review", Renew Sustain Energy Rev., Vol. 40, 2014, pp. 1108-1125, doi: https://doi.org/10.1016/j.rser.2014.07.127.
  5. J. K. Yeom, S. H. Jung, and J. H. Yoon, "An experimental study on the application of oxygenated fuel to diesel engines", Fuel, Vol. 248, 2019, pp. 262-277, doi: https://doi.org/10.1016/j.fuel.2018.12.131.
  6. H. W. Lee, D. H. Oh, and Y. J. Seo, "Prediction of changes in filling time and temperature of hydrogen tank according t o SOC of hydrogen", Trans Korean Hydrogen New Energy Soc, Vol. 31, No. 4, 2020, pp. 345-350, doi: https://doi.org/10.7316/KHNES.2020.31.4.345.
  7. B. H. Park, "Simulation of temperature behavior in hydrogen tank during refueling using cubic equations of state", Trans Korean Hydrogen New Energy Soc, Vol. 30, No. 5, 2019, pp. 385-394, doi: https://doi.org/10.7316/KHNES.2019.30.5.385.
  8. Ministry of Economy and Finance, "2050 carbon neutral strategy of the republic of Korea", Ministry of Economy and Finance, 2020. Retrieved from https://www.korea.kr/archive/expDocView.do?docId=39241.
  9. M. A. Bagherian and K. Mehranzamir, "A comprehensive review on renewable energy integration for combined heat and power production", Energy Conversion and Management, Vol. 224, 2020, pp. 113454, doi: https://doi.org/10.1016/j.enconman.2020.113454.
  10. M. Mahmoud, M. Ramadan, A. G. Olabi, K. Pullen, and S. Naher, "A review of mechanical energy storage systems combined with wind and solar applications", Energy Conversion and Management, Vol. 210, 2020, pp. 112670, doi: https://doi.org/10.1016/j.enconman.2020.112670.
  11. M. Li, Y. Bai, C. Zhang, Y. Song, S. Jiang, D. Grouset, and M. Zhang, "Review on the research of hydrogen storage system fast refueling in fuel cell vehicle", Int. J. Hydrog. Energy, Vol. 44, No. 21, 2019, pp. 10677-10693, doi: https://doi.org/10.1016/j.ijhydene.2019.02.208.
  12. J. Zheng, J. Guo, J. Yang, Y. Zhao, L. Zhao, X. Pan, J. Ma, and L. Zhang, "Experimental and numerical study on temperature rise within a 70 MPa type III cylinder during fast refueling", Int. J. Hydrog. Energy, Vol. 38, No. 25, 2013, pp. 10956-10962, doi: https://doi.org/10.1016/j.ijhydene.2013.02.053.
  13. J. Guo, J. Yang, Y. Zhao, X. Pan, L. Zhang, L. Zhao, and J. Zheng, "Investigations on temperature variation within a type III cylinder during the hydrogen gas cycling test", Int. J. Hydrog. Energy, Vol. 39, No. 25, 2014, pp. 13926-13934, doi: https://doi.org/10.1016/j.ijhydene.2014.03.097.
  14. N. de Muguel, R. O. Cebolla, B. Acosta, P. Moretto, F. Harskamp, and C. Bonato, "Compressed hydrogen tanks for on-board application: thermal behaviour during cycling", Int. J. Hydrog. Energy, Vol. 40, No. 19, 2015, pp. 6449-6458, doi: https://doi.org/10.1016/j.ijhydene.2015.03.035.
  15. C. P. Fowler, A. C. Orifici, and C. H. Wang, "A review of toroidal composite pressure vessel optimisation and damage tolerant design for high pressure gaseous fuel storage", Int. J. Hydrog. Energy, Vol. 41, No. 47, 2016, pp. 220647-22089, doi: https://doi.org/10.1016/j.ijhydene.2016.10.039.
  16. J. Zheng, X. Liu, P. Xu, P. Liu, Y. Zhao, and J. Yang, "Development of high pressure gaseous hydrogen storage technologies", Int. J. Hydrog. Energy, Vol. 37, No. 1, 2012, pp. 1048-1057, doi: https://doi.org/10.1016/j.ijhydene.2011.02.125.
  17. S. J. Ko, B. W. Kim, J. H. Park, G. H. Kang, and S. K. Lee, "Analysis of quenching performance of in-line flame arrester by analyzing temperature characteristics of body", Journal of the KNST, Vol. 3, No. 1, 2020, pp. 8-13, doi: https://doi.org/10.31818/JKNST.2020.03.3.1.8.
  18. Y. Okawa, S. Asano, C. Youn, S. Ikeda, and T. Kagawa, "Experimental research on a newly developed detonation flame arrester", SICE Annual Conference, 2008, pp. 1088-1091, doi: https://doi.org/10.1109/SICE.2008.4654819.
  19. H. I. Joo, K. Duncan, and G. Ciccarelli, "Flame-quenching performance of ceramic foam", Combustion Science and Technology, Vol. 178, No. 10-11, 2006, pp. 1755-1769, doi: https://doi.org/10.1080/00102200600788692.
  20. M. H. Mat Kiah and R. M. Kasmani, "Experimental study on premixed flame acceleration in closed pipe", Jurnal Teknologi, Vol. 62, No. 1, 2013, pp. 45-51, doi: https://doi.org/10.11113/jt.v62.1322.
  21. S. Z. sulaiman, R. M. Kasmani, and A. Mustafa, "Experimental study on the effect of curved tube of premixed hydrogen-air explosion", Journal of Engineering Science and Technology, Special Issue on SOMCHE 2014 & RSCE 2014 Conference, pp. 50-60, 2015.
  22. ANSYS, "ANSYS FLUENT theory guide", ANSYS, 2020. Retrieved from http://www.pmt.usp.br/academic/martoran/notasmodelosgrad/ANSYS%Fluent%Theory%Guide%15.pdf.
  23. R. Nowak, "Estimation of viscous and inertial resistance coefficients for various heat sink configurations", Procedia Engineering, Vol. 157, 2016, pp. 122-130, doi: https://doi.org/10.1016/j.proeng.2016.08.347.
  24. J. I. Lim, J. H. Park, J. H. Kim, and D. J. Kim, "Flow analysis of sea-water strainer", Korean Society for Fluid Machinery, 2009, pp. 333-334. Retrieved from https://www.dbpia.co.kr/Journal/articleDetail?nodeId=NODE01356715.