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Abstract

Korea has been huge investments in its port system, annually upgrading its infrastructure to turn 

the ports into Asian hub port. However, while Busan port is ranked fifth globally for container 

throughput, Other Korean ports are ranked much lower. This article applies Data Envelopment 

Analysis (DEA) and Malmquist Productivity Index (MPI) to evaluate selected major Korean seaports' 

operational efficiency and productivity from 2010 to 2018. It further integrates Principal Component 

Analysis (PCA) into DEA, with the PCA-DEA combined model strengthening the basic DEA results, 

as the discriminatory power weakens when the variable number exceeds the number of Decision 

Making Units(DMU). Meanwhile, MPI is applied to measure the seaports' productivity over the 

years. The analyses generate efficiency and productivity rankings for Korean seaports. The results 

show that except for Gwangyang and Ulsan port, none of the selected seaports is currently 

efficient enough in their operations. The study also indicates that technological progress has led to 

impactful changes in the productivity of Korean seaports.
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Ⅰ. Introduction

Geographically, Korea has close ties with ocean 

economies such as Japan and countries in 

Southeast Asia, as well as continental economies 

including China, Russia, and America. Korea’s na-

tional economy has been enjoying prosperous de-

velopment and growth. According to the World 

Bank’s statistics data, Korea’s economy ranks 

fourth in Asia and the twelveth in the world. 

Similar to other industrialized countries, Korea suf-

fered significant setbacks from the 2007 recession; 

however, from 2015, due to the Chinese stock 

market turbulence that affected world finance - 

and especially, China’s linkage countries - Korea’s 

economy experienced the sharpest annual decline 

in both exports and imports since the global finan-

cial crisis. The decline continued throughout 2016 

before briskly rebounding in 2017 (World Bank 

data, 2019). These developments have significantly 

increased the chance for seaports’ development. 

Therefore, Korean port authorities have im-

plemented different government-aided programs to 

improve infrastructure and facilities and upgrade 

services. In addition, the Korean government has 

been endeavouring to transform Busan and 

Gwangyang ports into important regional or global 

hub-ports by expanding their berths and upgrad-

ing infrastructure and superstructure (Yeo et al., 

2008). Consequently, Korea has been ranked in 

the top five in terms of traffic volume and liner 

shipping connectivity. However, these have also 

created various difficulties in the seaports’ 

performance. According to 2018 World Bank data, 

the score for the quality of trade and transport re-

lated infrastructure(logistics performance index) of 

Korean container ports was 3.73. These illustrate 

that Korea’s trade and transport-related infra-

structure are not competitive and may create bar-

riers for ports’ competitiveness and efficiency. 

Thus, the study assesses the performance of major 

Korean seaports using the DEA model and MPI to 

reveal their efficiency and productivity in recent 

years. Moreover, the current article could inform 

port policies to improve efficiency and pro-

ductivity through different strategies for each port.

The paper is structured as follows: Section 2 re-

views the literature on port’s efficiency with DEA 

and MPI, Section 3 mentions some methods used 

in the study, Section 4 provides the model’s results 

and their implications, and Section 5 presents the 

findings of the study.

Ⅱ. Literature Review

The DEA model has been applied in previous 

studies to examine ports’ efficiency. For instance, 

Tongzon (2001) used the DEA model for container 

ports in Australia, and Valentine and Gray (2001) 

used the CCR model of DEA to identify relative ef-

ficiencies of 31 global container ports. Bonilla et 

al. (2002) analyzed the efficiency of the Spanish 

seaport system using DEA. Turner et al., (2004) 

used the DEA model to measure infrastructure 

productivity and Tobit regression to examine the 

determinants of infrastructure productivity in 

American container ports. Ryoo (2005) evaluated 

the efficiency of ports in Busan and Gwangyang. 

Additionally, by applying the DEA model, Pang 

(2006) examined the efficiency of 50 major sea-

ports in China. DEA has also been used in many 
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studies: Cullinane and Wang (2006) used DEA for 

104 container terminals in Europe, Kwon (2007) 

used DEA for 22 North-east Asian ports, Park 

(2011) used DEA for 11 container terminals in 

Busan, and for the port of Gwangyang, and Kim 

and Hwang (2012) studied some major container 

ports in Korea and China by comparing the trans-

portation process results before and after the fi-

nancial crisis. Also, Wisnicki et al. (2017) analyzed 

nine European terminals that used different han-

dling technology to measure efficiency by apply-

ing the DEA model, while Wanker et al. (2018) 

assessed the efficiency of six major Nigerian ports 

from 2003 to 2007 by applying a two-stage fuz-

zy-based methodology. Thus, previous studies 

were based on specific physical input variables 

such as berth length, number of cargo handling 

equipment, total yard area, and, most commonly, 

container throughput. While many other variables 

were considered to affect the port’s operational ef-

ficiency, such as the port handling capacity, hin-

terland related factors—such as number of hinter-

land areas served by the port, number of the in-

dustrial complex around the port, and consumer 

area population—were not considered the parame-

ters for input and output properly in DEA. 

Moreover, there have been no controlled studies 

that focused on the efficiency of major Korean 

seaports, although one study compared a few 

large Korean seaports to other countries’ seaports. 

(Ryoo, 2005; Park, 2011; Kim and Hwang, 2012)

However, in the above mentioned studies, we 

could not find the discrimination with the applica-

tion of DEA because there is a disproportion be-

tween inputs, outputs, and the number of 

Decision Making Units (DMUs). When this occurs, 

many DMUs will form the frontier and are efficient 

DMUs; for example, a substantial unit proportion 

is considered efficient (Adler and Golany, 2007). 

To overcome this drawback, Adler and Berechman 

(2001) built a PCA based methodology to change 

the number of inputs or outputs used in the DEA 

model into a factor and applied it to measure 

West-European airport quality from the airlines’ 

perspective. In addition, Adler and Yazhemsky 

(2010) applied Monte Carlo simulations to analyze 

two discrimination improving methods. They 

found that the combination between PCA and 

DEA provided a more powerful tool than VR 

(virtual reality) with consistently more accurate 

results. Therefore, this article will combine the 

DEA model with PCA to reduce the number of in-

puts and outputs before using these variables for 

efficiency and productivity measurement.

Moreover, as the DEA model cannot compare 

performances across years, the study incorporates 

the MPI to evaluate the productivity of these sea-

ports during the research period. Some studies uti-

lized MPI to analyze the change in the efficiency 

of seaports. For instance, Liu, Liu, and Cheng 

(2006) calculated the productivity of some contain-

er terminals in Mainland China between 2003 and 

2006 by employing MPI. This study indicated that 

large ports worked most efficiently, and Sino-for-

eign joint ventures (in terms of ownership) per-

formed better than domestic companies. 

Haralambides et al. (2010) employed the 

Malmquist index and Luenberger indicator (a pro-

ductivity indicator that can reduce the number of 

inputs and increase the number of outputs simul-

taneously) to analyze the productivity of 16 sea-

ports of the Middle East and East Africa. The re-
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sult indicated that ports in these regions declined 

in technical efficiency despite adopting new 

technologies. Wang and Lan (2011) proposed a 

new approach based on double frontiers in-

put-oriented DEA (DFDEA) based MPI. Gunet and 

Coskun (2013) combined the DEA model and uti-

lized the MPI to measure the efficiencies of 4 par-

ticipating passenger ports in Turkey and their effi-

ciency change from 2003 to 2010. Additionally, 

Nwanosike et al. (2016) employed MPI to bench-

mark pre-and post-reform productivity growth of 6 

major Nigerian seaports from 2000 to 2011, repre-

senting six years before and after the reform. This 

study indicated the source of pre-concession peri-

od productivity growth as technological progress, 

while an increase in scale efficiency generated the 

productivity change of the post-concession period. 

In short, this article combines the DEA model 

and MPI to measure the efficiency and pro-

ductivity variation of major Korean seaports during 

a decade. In addition, this article is the first to 

merge with the PCA model to account for the 

shortage of the number of decision-making units.

Ⅲ. Methodology

3.1  Data Envelopment Analysis (DEA) model

The DEA model was developed by Charnes, 

Cooper, and Rhodes (1978), and the DEA-CCR 

(Charnes et al. 1978) and DEA-BCC (Banker et al. 

1984) are applied commonly to measure the effi-

ciency of DMUs. The primary difference between 

the CCR and BCC models is that the CCR model 

supposes a constant return to scale (CRS) while 

the BCC model supposes a variable return to scale 

(VRS). CRS implies that a change in the input 

amount will lead to a similar change in the output 

number and that all observed production combina-

tions can be increased or decreased 

proportionally. On the other hand, the BCC model 

allows for VRS and is graphically represented by a 

piecewise linear convex frontier.

3.1.1 DEA-CCR model

In the DEA-CCR model, there are n DMUs, and 

each DMU uses m different inputs to produces dif-

ferent outputs. Specifically, DMUj consumes 

amounts Xj = [xij] of inputs (i=1,….,m) and pro-

duces amounts Yj = [yrj] of outputs (r=1,…,s). The 

s × n matrix of output measures is represented by 

Y, and the m × n matrix of input measures is rep-

resented by X. Another assumption is that xij and 

yrj are both positive. Let us consider the problem 

of evaluating the relative efficiency for any one of 

the n DMUs, which will be identified as DMU0. 

The relative efficiency for DMU0 is calculated by 

maximizing the weighted sum of the target output. 

This weighted sum of the target inputs is equal to 

unity, and the differences between the weighted 

sum of the outputs and that of the inputs are 

smaller than zero and expressed as Equation (1).
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Where ur is output r and vi is input i
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A DMU is CCR efficient if ɵ* = 1 and there ex-

ists at least one optimal where vr* > 0 and ui* > 0 

are optimal solutions of formula (1). Otherwise, 

the DMU is inefficient.

3.1.2 DEA-BCC model

The BCC model is expressed as Equation (2)
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If a DMU is CCR efficient, then it is also BCC 

efficient.

The score of the BBC efficiency will be ob-

tained by running the BBC model for each DMU. 

These scores are called “pure technical efficiency 

scores”. The CCR-efficiency score of all DMUs will 

be lower than the BCC-efficiency score. Except for 

u0, which may be positive, negative, or zero, all 

the variables of the function in Equation (2) are 

constrained to be non-negative. 

Most studies have divided the efficiency score 

derived from the DEA-CCR model. One such score 

is called scale efficiency, and the other is known 

as pure technical efficiency. This can be achieved 

by applying both the CRS (DEA-CCR) and VRS 

(DEA-BCC) models to the same data. If a specific 

DMU shows a difference between two efficiency 

scores, it means that DMU has scale inefficiency. 

The scale inefficiency score can be obtained by 

calculating the difference between the DEA-CCR 

and the DEA-BCC efficiency scores, as shown in 

Equation (3).

Scale Efficiency Score (SE) = Technical effi-

ciency (TE-CCR)/ Pure Technical Efficiency 

(PTE-BCC)       (3)

3.2  Malmquist Productivity Index (MPI)

The Malmquist Index was introduced by 

Douglas W. Caves, Laurits R. Christensen, and W. 

Erwin Diewert (1982). The MPI measures the pro-

ductivity changes (productivity growth) over time. 

MPI analyze the change in productivity with re-

gard to the change of time, and it can be divided 

into changes in efficiency and technology. The 

non-parametric MPI measures the Total Factor 

Productivity Changes (TFPCH) of a specific DMU 

and measures the efficiency change between two 

adjacent periods based on DEA. The index can be 

identified as Equation: 
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Where TFPCH refers to the MPI value, which 

stands for the whole change that may change over 

time because of EFFCH (Efficiency Changes) or 

TECHCH (Technical Changes). EFFCH reflects the 

change of technology efficiency from this period 

to the next period and shows the DMU’s attempt 

to improve its efficiency. EFFCH = 1 stands for 

the steadiness. EFFCH > 1 implies that DMU is 

improving, and EFFCH < 1 shows the decline of 

technical efficiency of DMU. EFFCH can be bro-

ken down into two components: PECH (Pure 
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Efficiency Changes) and SECH (Scale Efficiency 

Changes). PECH denotes the management degree 

in employing given resources, while scale effi-

ciency evaluates the ability to exploit scale econo-

mies for DMUs. TECHCH reflects the technological 

change by measuring the production frontier 

movement between periods.

3.3  Principle Component Analysis (PCA)

One of the drawbacks of the DEA model is that 

the number of DMUs should be large enough to 

ensure the research result accuracy. In other 

words, the number of inputs and outputs and the 

DMUs determine the extent of discrimination be-

tween efficient and inefficient units. With a larger 

population, a greater probability exists of captur-

ing high-performance units that would determine 

the efficient frontier (Golany and Roll, 1989). 

Therefore, there are some rules of thumb on input 

and output number and their relation to the DMU 

number. Golany and Roll (1989) stated a rule of 

thumb that the unit number should be at least 

twice the number of inputs and outputs 

considered. However, in this paper, only nine sea-

ports have been considered, which is much less 

than the standard because the seaports system in 

Korea depends mainly on these major seaports 

and the remaining seaports account for extremely 

small proportions. 

Therefore, to overcome the limitation of the 

DEA model, dimensionality reduction schemes 

were combined, such as PCA. PCA was first used 

in 1901 by Karl Pearson and is mainly used as an 

exploratory data analysis tool. A mathematical pro-

cedure will transform correlated variables into un-

correlated variables in PCA. In this paper, PCA 

was employed to embed the inputs and outputs 

into a reduced subspace for further analyses.

Ⅳ. Analysis result for efficiency and 

productivity

This part evaluated the efficiency and pro-

ductivity of major Korean seaports. These leading 

seaports significantly influenced cargo trade and 

maritime transport. The dataset for analysis in-

cluded 9 Korean seaports selected in terms of car-

go handling volume. The analysis period was from 

2010 to 2018 (9 years), and the port data were as-

sembled from the relevant websites for port author-

ities, Korean statistics, etc.The first step was to col-

lect the data related to the performance of these 

nine seaports and the data were be divided into 

two types: inputs and outputs. The second step 

used the PCA model to reduce the dimension in 

the research. In other words, the number of output 

variables used in the DEA model were reduced 

adopting PCA. The reduction here is not factoring 

elimination but changing factors into the principal 

components so that the number is always less than 

the original number of inputs and outputs. Finally, 

the PCA model results measured efficiency and pro-

ductivity using the DEA model and the Malmquist 

index. The details of each step are as follows.

Step 1. Collecting the data

The dataset for analysis included the 9 Korean 

seaports in terms of cargo handling volume, and 

the top three were Busan, Gwangyang, and Ulsan 

ports. The top three seaports accounted for nearly 
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60% of total cargo volume in the 2018 Korean sea-

ports system, and the top 9 seaports accounted for 

about 90% of total cargo volume (see Table 1).

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018

Busan 226.3 262.1 294.3 312.0 324.9 346.6 359.7 362.4 401.2 460.1

Gwangyang 182.7 206.7 219.9 237.3 239.6 253.3 272.0 283.1 292.3 301.9

Ulsan 169.4 171.7 193.8 196.9 191.0 191.7 190.9 197.6 202.4 202.8

Incheon 132.4 149.8 147.7 143.9 146.1 150.1 157.6 161.3 165.5 163.5

Pyeongtaek 51.3 76.7 95.6 100.7 109.3 117.0 112.2 113.0 112.5 115.1

Daesan 64.7 66.1 66.5 70.1 69.0 72.9 78.5 85.9 90.3 92.1

Pohang 58.7 63.1 66.9 62.8 61.7 65.2 61.5 62.3 58.9 60.5

Donghae 24.6 28.0 31.3 31.2 31.7 32.5 31.3 32.3 33.3 34.2

Mokpo 15.1 16.4 17.8 16.9 20.2 23.0 22.5 23.6 23.8 22.4

Other 151.5 163.5 177.4 166.6 165.6 163.5 176.9 188.1 194.2 172.2

Total 1,076.5 1,204.1 1,311.2 1,338.6 1,358.9 1,415.9 1,463.1 1,509.5 1,574.3 1,624.7

Table 1. Cargo handling performance of major Korean seaports (Mil. R/T)

Source: Port authorities

X1
X2

(km)

X3

(Mil.R/T)

X4

(㎢)
X5 X6

Y1

(Mil. persons)
Y2

Y3

(1,000 MT)

Y4

(Mil.R/T)

Mean 70.1 14.3 231.1 100.1 1.2 8.0 12.6 34.2 349.1 135.1

Median 60.5 12.9 136.5 85.2 1.0 7.0 3.9 19.2 284.1 110.7

S.D. 41.5 8.8 275.7 92.9 1.0 5.2 15.4 27.5 337.4 104.2

Kurtosis -1.3 -0.9 10.0 1.3 -0.1 0.8 1.7 0.9 1.6 0.3

Skew. 0.3 0.3 3.1 1.4 0.6 1.1 1.7 1.4 1.5 0.94

Min 15 0.6 50 10.6 0 2 1.5 7.3 38.0 15.1

Max 162 31.1 1605 355.9 4 24 51.8 105.0 1342.2 460.1

N 81 81 81 81 81 81 81 81 81 81

Table 2. Result of descriptive statistics of major Korean seaports

Six inputs and four outputs belonged to three 

primary indicators: physical infrastructure, hinter-

land connection and operating indicators, as in-

dicated in Table 3. The input variables included 

the necessary physical facilities of seaports, which 

directly influenced the cargo handling operation, 

such as berth number (X1), berth length (X2), car-

go handling facility (X3), and yard capacity (X4). 

While berth number, berth length, and handling 

capacity represented the infrastructure providing 

an overview of port assets, the handling facility di-

rectly influenced the increase in port capacity such 
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that more cargo brings increased efficiency and 

flexibility, allowing a port to work with more ves-

sels simultaneously. Moreover, hinterland con-

nections such as the number of hinterland zones 

(X5) and industrial complexes (X6) indicated how 

well and attractively the seaports worked. The 

port hinterland can be understood as the market 

area from where a port attracts its cargo or 

customers. Therefore, a large hinterland area along 

with many industrial complexes showed port de-

velopment ability as well as its network with other 

areas.On the output side, the port output could be 

multi-dimensional depending on the objective that 

the port attained to achieve. The chosen output 

variables were consumer population (Y1), the 

number of vessels (Y2), total vessel gross tonnage 

(Y3), and cargo handling volume (Y4). While car-

go handling volume was unquestionably the most 

important and widely used variable of a seaport 

and is closely related to the requirement for car-

go-related facilities and services, the number of 

vessels, total vessel gross tonnage, and consumer 

population represented the attractiveness of the 

seaport.

Primary Indicator Secondary indicator Properties and Symbols of the Indicators

Physical infrastructure

Berth number Input indicator X1

Berth length Input indicator X2

Cargo handling facility Input indicator X3

Yard capacity Input indicator X4

Hinterland connection

Number of hinterlands Input indicator X5

Number of industrial complexes Input indicator X6

Consumer population Output indicator Y1

Operating indicators

Number of vessels Output indicator Y2

Total vessel gross tonnage Output indicator Y3

Cargo handling volume Output indicator Y4

Table 3. An evaluation factors for the indicators

Indicator

Load of the 
primary 

components 
of the input 

indicators

Indicator

Load of the 
primary com-

ponents of 
the output 
indicators

X5 0.900 Y3 0.962

X2 0.895 Y2 0.949

X1 0.704 Y4 0.913

X4 0.606 Y1 0.873

X6 -0.027

X3 0.450

Table 4. Component matrix of the inputs and outputs 

(a sample for 2018)

Step 2. Reducing the number of related factors

It has been mentioned that there is some rule 

of thumb on the input and output number and 

their relation to the DMU number in the DEA 

model when the number of chosen seaports is 

small. Therefore, it was suggested to use the PCA 

model to reduce the original number of inputs 

and outputs. The statistical package, SPSS 24, con-

ducts to extract the principal components of all in-

puts and outputs separately.

Factor loadings serve as a data reduction meth-
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od designed to explain the correlations between 

observed variables using fewer factors. The new 

factors are matched to the original factors based 

on a linear combination. The number of primary 

components will always be equal to or less than 

the number of variables. The rule is to choose the 

first k eigenvectors that capture at least 85% of the 

total variance. In Table 4, for example, in 2018, 

one principal component is obtained from six in-

puts (PCI), and one principal component is ob-

tained from four outputs (PCO) with an accumu-

lative contribution ratio of about 85% are selected.

 

Port

Principal 
components of 

the input 
indicators (PCI)

Principal 
components of the 
Output indicators 

(PCO)

Busan 1799.131 1918.520

Gwangyang 406.694 1011.790

Ulsan 282.213 693.677

Incheon 512.982 590.719

Pyeongtaek 278.058 427.684

Daesan 167.452 257.492

Pohang 231.556 191.792

Donghae 127.459 96.307

Mokpo 141.075 117.252

Table 5. Input data for efficiency and productivity 

evaluation (a sample for 2018)

Then with that load factors, we recalculate the 

data used for measuring efficiency and pro-

ductivity as follows for 2018 data as an example, 

and the calculated results of the 2018 data are 

shown in Table 5. The description of the new 

data is shown in Table 6:

   ×    ×    ×    × 

  ×   × 

   ×    ×   ×   

× 

Classification PCI PCO

Mean 377.306 532.822

Median 262.116 422.827

S.D. 347.732 478.808

Kurtosis 5.497 1.166

Skewness 2.353 1.353

Range 1711.567 1839.662

Minimum 87.564 78.858

Maximum 1799.131 1918.519

Count 81 81

Table 6. Result of descriptive statistics from new data

As an example of the 2018 data, in this study, we 

calculated the coefficient values from 2010 to 2018.

Step 3. Evaluation of major Korean seaports’ 

efficiency and productivity

The following section presents the results of the 

efficiency and productivity analyses of Korean 

seaports. In the first stage, the DEA model results 

used for the efficiency measurement of the studied 

seaports are analyzed. The MPI model results used 

for productivity measurement are presented in the 

second stage. DEA models can be distinguished 

based on their input or output orientation. The 

former is closely related to operational and mana-

gerial issues, whilst the latter is more related to 

planning and macroeconomic strategies (Baran and 

Gorecka, 2015). Both orientations display their 

usefulness for the seaport industry. The rapid 

growth of global business and international trade 

requires seaports to frequently review their oper-

ation to ensure that they can provide the best 

services to customers and maintain their 



132 한국항만경제학회지, 제38집 제2호

competitiveness. From this viewpoint, the in-

put-oriented model provides a benchmark for the 

seaport industry. The efficiency results are shown 

in Table 7.

Year 2018 2017 2016 2015

Seaport TE PTE SE RTS TE PTE SE RTS TE PTE SE RTS TE PTE SE RTS

Busan 0.43 1.00 0.43 DCR 0.50 1.00 0.50 DCR 0.49 1.00 0.49 DCR 0.55 1.00 0.55 DCR

Gwangyang 1.00 1.00 1.00 CONT 0.96 1.00 0.96 DCR 0.95 1.00 0.95 DCR 1.00 1.00 1.00 CONT

Ulsan 0.99 1.00 0.99 ICR 1.00 1.00 1.00 CONT 1.00 1.00 1.00 CONT 0.90 0.97 0.92 ICR

Incheon 0.46 0.50 0.92 ICR 0.50 0.52 0.96 ICR 0.48 0.51 0.95 ICR 0.53 0.60 0.89 ICR

Pyeongtaek 0.62 0.78 0.79 ICR 0.63 0.74 0.86 ICR 0.61 0.75 0.81 ICR 0.72 0.90 0.81 ICR

Daesan 0.40 0.92 0.44 ICR 0.68 1.00 0.68 ICR 0.55 0.94 0.59 ICR 0.59 0.95 0.62 ICR

Pohang 0.23 0.62 0.37 ICR 0.32 0.60 0.53 ICR 0.31 0.62 0.50 ICR 0.32 0.57 0.56 ICR

Donghae 0.20 1.00 0.20 ICR 0.27 0.97 0.28 ICR 0.25 0.92 0.27 ICR 0.26 0.82 0.32 ICR

Mokpo 0.27 0.96 0.28 ICR 0.36 1.00 0.36 ICR 0.38 1.00 0.38 ICR 0.45 1.00 0.45 ICR

Table 7. Efficiency results of major Korean seaports (2010-2018)

Year 2014 2013 2012 2011 2010

Seaport TE PTE SE RTS TE PTE SE RTS TE PTE SE RTS TE PTE SE RTS TE PTE SE RTS

Busan 0.57 1.00 0.57 DCR 0.64 1.00 0.64 DCR 0.71 1.00 0.71 DCR 0.981 1.00 0.98 DCR 0.83 1.00 0.83 DCR

Gwangyang 1.00 1.00 1.00CONT 1.00 1.00 1.00CONT 1.00 1.00 1.00CONT 0.877 0.88 0.99 DCR 0.97 1.00 0.97 DCR

Ulsan 0.97 1.00 0.97 ICR 0.94 1.00 0.94 ICR 0.87 0.91 0.96 ICR 1.000 1.00 1.00 CONT 1.00 1.00 1.00 CONT

Incheon 0.51 0.55 0.93 ICR 0.51 0.57 0.89 ICR 0.52 0.57 0.91 ICR 0.513 0.54 0.94 ICR 0.51 0.52 0.99 ICR

Pyeongtaek 0.63 0.73 0.87 ICR 0.79 0.95 0.83 ICR 0.85 1.00 0.85 ICR 0.776 0.92 0.84 ICR 0.89 1.00 0.89 ICR

Daesan 0.60 0.92 0.65 ICR 0.58 0.97 0.60 ICR 0.56 0.93 0.60 ICR 0.553 0.90 0.61 ICR 0.68 0.90 0.75 ICR

Pohang 0.36 0.56 0.64 ICR 0.31 0.54 0.58 ICR 0.38 0.63 0.60 ICR 0.365 0.57 0.63 ICR 0.47 0.61 0.76 ICR

Donghae 0.31 0.84 0.37 ICR 0.37 1.00 0.37 ICR 0.33 0.97 0.34 ICR 0.386 1.00 0.38 ICR 0.51 1.00 0.51 ICR

Mokpo 0.51 1.00 0.51 ICR 0.44 0.96 0.46 ICR 0.41 1.00 0.41 ICR 0.399 0.88 0.45 ICR 0.41 0.69 0.60 ICR

Table 7 indicates the CCR and BCC models that 

evaluate to nine Korean seaports. A value of one 

represents ideal efficiency. It was pointed out that 

during the research period from 2010 to 2018, on-

ly Gwangyang and Ulsan ports were considered to 

have operational efficiency while other seaports at-

tained very low efficiency scores. Some of the in-

efficient seaports exhibited pure technical efficien-

cies, such as Busan or Mokpo port. 

Meanwhile, most inefficient seaports are increas-

ing returns to scale with the exception of Busan 

port that displayed decreasing returns to scale. 

From an economic viewpoint, increasing returns to 

scale means that the growth rate of output is high-

er than the growth rate of input. By contrast, 

when the growth rate of output is lower than the 

growth rate of input, it is called decreasing returns 

to scale. When increasing returns to scale occur, it 

results in economies of scale. The efficiency of an 

organization will increase when it expands the 

scale. Even when the product has been expanded, 

an efficiency loss in the production process results 

in decreasing returns to scale. Therefore, it is eas-

ier for seaports to increase returns to scale. That 

means they can increase their efficiency by in-

creasing their operational size. While a seaport 
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like Busan cannot reduce its size to increase effi-

ciency, the port needs to change the inbound 

management or cooperate with neighbouring sea-

ports to increase returns to scale seaports to share 

equipment.

On the other hand, the relative role of pure 

technical inefficiency and scale effects on the total 

technical efficiency of major Korean seaports can 

be more easily explained through the graphical il-

lustration of the corresponding CCR and BCC 

scores as data pairs in a two-dimensional graph 

(see Figure 1. (a) and (b))

Figure 1. Graphical illustration of Korean seaport’s 

efficiency

(a) Result from 2010 to 2014

(b) Result from 2015 to 2018

All seaports are divided into four regions by us-

ing two lines, one is a vertical line to the x-axis, 

which is the average pure technical efficiency 

score (see example in Figure 2, 2018, average 

BCC=0.865), and the other is a line representing 

the average scale efficiency (example in 2018, 

average SE=0.603), that is technical efficiency = 

scale efficiency*pure technical efficiency or CCR = 

0.603*BCC. It is shown in the result of 2018 in 

Figure 1.(b). that the seaports located in the up-

per-right region, including Gwangyang and Ulsan 

ports, have both high pure technical efficiency 

and scale efficiency, which implies that the sea-

ports effectively manage their facilities and serve a 

large cargo number. The four seaports located in 

the lower-right region, Daesan, Busan, Mokpo, 

and Donghae ports, possessed high pure technical 

efficiency but relatively low scale efficiency com-

pared to average scale efficiency. Although these 

seaports effectively managed their facilities, they 

are subjected to scale effects as they cannot ad-

equately accommodate the cargo’s arrival volume. 

In addition, the seaports located in the upper-left 

region, including Incheon and Pyeongtaek ports, 

displayed a relatively large scale but low pure 

technical efficiency. These seaports accommodated 

many cargoes with only limited performance as 

they did not control their resources efficiently. 

Finally, the lower-left region, which contains only 

the Pohang port, possessed low pure technical 

and scale efficiency. This seaport served low car-

go traffic with an inefficient use of its facilities. 

Thus, this port had room to improve its com-

petitive position by attracting more cargoes and 

better resource management. 

The second stage will be the productivity analy-
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sis of major Korean seaports from 2010 to 2018. 

The results will be shown in Table 8.

From Table 8, while the technical efficiency 

change decreased by 3.1% on average during the 

research time, except for the slight increase in 

2016-2017, the technological change increased by 

4.4%. The technical efficiency change can be 

identified as two changes, including pure technical 

efficiency and scale efficiency. While pure techni-

cal efficiency change slightly increased by 0.3%, 

the scale efficiency change decreased by 3.3% on 

average during the research period. The pro-

ductivity index change rate (1.1% on average) 

could be due to technological change.

Year EFFCH TECHCH PECH SECH TFPCH

2010-

2011
0.913 1.174 1.004 0.910 1.072

2011-

2012
0.966 1.000 1.044 0.925 0.966

2012-

2013
0.990 1.073 0.989 1.001 1.063

2013-

2014
0.981 0.941 0.952 1.031 0.923

2014-

2015
0.960 1.104 1.033 0.929 1.060

2015-

2016
0.933 1.104 0.987 0.945 1.030

2016-

2017
1.037 0.963 1.008 1.028 0.999

2017-

2018
0.978 1.011 1.006 0.972 0.988

Average 0.969 1.044 1.003 0.967 1.011

Table 8. Malmquist productive change index and its 

components 

Seaport EFFCH TECHCH PECH SECH TFPCH

Busan 0.720 1.186 1.000 0.720 0.854

Gwangyang 1.003 0.927 1.000 1.000 0.927

Ulsan 0.974 0.960 1.000 0.974 0.935

Incheon 0.929 0.723 0.831 1.119 0.672

Pyeongtaek 0.882 1.127 0.940 0.939 0.995

Daesan 0.925 1.146 1.000 0.925 1.060

Pohang 0.873 1.099 0.988 0.884 0.959

Donghae 0.848 1.146 1.000 0.848 0.972

Mokpo 0.891 1.146 0.994 0.896 1.021

Average 0.894 0.891 0.971 0.921 0.796

Table 9. Malmquist productive change index and its 

components by seaports 

Table 9 shows the productivity change and its 

components’ change of each seaport during the 

research period. Regarding technical efficiency 

change, only Gwangyang port increased by 0.3%; 

meanwhile, other seaports exhibited a decline, 

especially with Busan port that indicated a de-

crease by 7.9%. Three seaports indicated techno-

logical regression, especially Incheon port with 

27.7%, and six seaports exhibited technological 

progress, and the top three seaports were 

Daesan, Mokpo, and Donghae ports. Several sea-

ports maintained their efficiency in pure technical 

efficiency change and scale efficiency change 

while some showed a significant reduction, such 

as Incheon (16.9%) and Busan (28%) ports.

Finally, the efficiency scores, productivity scores, 

and ranking of major Korean seaports were com-

bined in Table 10. In general, the two big and 

well-known seaports, Busan and Incheon, failed to 

maintain their positions. Busan port exhibited a 

scale inefficiency that indicated that the port re-

quired more operational efficiency than a quantita-

tive increase in facilities. For instance, the Busan 
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port had been divided into several operators; 

therefore, the irrationality of the operating system 

had become problematic for scale efficiency. Also, 

Incheon port has to consider the problem regard-

ing not only scale efficiency such as quantitative 

improvement in port facilities but also operational 

efficiency about infrastructure and industrial facili-

ties inside the port. Therefore, Incheon port 

should develop infrastructure such as logistics cen-

ters for the e-commerce market and value-added 

activities to support the port.

DMU

Efficiency score Malmquist 
productivity 

index2010 2018

TE PTE Rank TE PTE Rank
2010-

2018
Rank

Busan 0.83 1.00 4 0.43 1.00 5 0.854 8

Gwang

yang
0.97 1.00 2 1.00 1.00 1 0.927 7

Ulsan 1.00 1.00 1 0.99 1.00 2 0.935 6

Incheon 0.51 0.52 9 0.46 0.50 4 0.672 9

Pyeong

taek
0.89 1.00 3 0.62 0.78 3 0.995 3

Daesan 0.68 0.90 6 0.40 0.92 6 1.060 1

Pohang 0.47 0.61 8 0.23 0.62 8 0.959 5

Dong

hae
0.51 1.00 5 0.20 1.00 9 0.972 4

Mokpo 0.41 0.69 7 0.27 0.96 7 1.021 2

Table 10. Overall efficiency score and productivity index 

of major Korean seaports (2010-2018)

On the other hand, more minor seaports such as 

Daesan and Mokpo port, which still possessed a 

lower efficiency score than other ports, have in-

dicated a rapid growth trend in recent years. 

With a convenient location near China by sea 

and a convenient transportation system to other 

areas, Daesan port focusing on oil commodity 

and Mokpo port focusing on automobiles assert 

their positions. 

Ⅴ. Discussion and Conclusion

In this study, we researched major Korean sea-

ports using a combination of the DEA model with 

PCA and MPI. Previous studies on the DEA model 

have been based on some rule of thumb on the 

output number and its relation to the DMU 

number. However, in this paper, only nine Korean 

seaports have been considered as the seaports sys-

tem in Korea depends largely on these major sea-

ports and the remaining seaports account for ex-

tremely small proportions. Therefore, to overcome 

the limitation of applying the DEA model, the 

DEA model with dimensionality reduction schemes 

such as PCA was combined. The initial six inputs 

and four outputs were changed into a single input 

and output using the PCA model. Subsequently, 

the new variables were used to measure the effi-

ciency and productivity of major Korean seaports. 

The efficiency results showed that Gwangyang and 

Ulsan ports were regarded as efficient seaports, 

whereas the two well-known seaports (Busan and 

Incheon) had a low-efficiency score.  

The productivity results showed that productivity 

change improved by 1.7% due to a 4.4% increase 

in technological change. The technical efficiency 

change increased only in Gwangyang port while 

decreasing in the remaining seaports. During the 

research period, the port with the highest pro-

ductivity growth was Daesan port, followed by the 

Mokpo port, while the lowest was the Incheon 

port. Daesan port focused on oil commodity 
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whereas Mokpo port focused on automobiles re-

sulting in rapid growth in recent years. 

Meanwhile, well-known seaports like the Incheon 

and Busan port should employ new strategies to 

reaffirm their positions.

This study is valuable as it analyzed the effi-

ciency and productivity of Korean major ports us-

ing actual ten year’s data. The study results pro-

vide valuable data while diagnosing the situation 

of each port, making up for deficiencies, and es-

tablishing strategies to improve port 

competitiveness.  
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PCA-DEA 모델을 이용한 국내 주요항만의 효율성과 생산성 

분석에 관한 연구

팜티큔 마이·김화영

국문요약

우리나라는 동북아지역에서 아시아 허브항만의 위상을 유지하기 위해 항만시스템의 업그레이드에 막
대한 예산을 투입하고 있다. 그 결과로 우리나라 대표항만인 부산항은 세계 5위 수준의 컨테이너 물동
량 처리 수준을 보이고 있다. 그러나 부산항을 제외한 다른 항만은 낮은 순위에 자리하고 있다. 이 연
구는 자료포락분석(DEA) 모델과 Malmquist 생산성지수(MPI)를 이용하여 국내 주요 항만의 효율성과 생
산성을 분석하는데 목적이 있다. 특히 변수의 수가 의사결정단위(DMU) 수를 초과할 경우 판별력이 약
해지는 DEA모델을 보완하기 주성분분석(PCA, Principal Component Analysis)을 DEA모델에 결합한 
PCA-DEA모델을 이용하였다. 그리고 MPI는 다년간의 항만의 생산성을 측정하기 위하여 적용하였다. 그 
결과로 우리나라 주요항만의 효율성과 생산성 순위를 결정할 수 있었으며, 광양항과 울산항 2010년과 
2018년 비교시 효율성 측면에서 상위권을 보였으며, 생산성 분석 결과에 있어서 대산항과 목포항이 다
른 항만에 비해 상대적으로 높게 나타났다. 이 연구결과는 항만별 경쟁력을 객관적으로 평가하고 전략
을 마련하는데 활용될 수 있다. 

주제어: 국내 주요항만, 효율성, 생산성, PCA-DEA,


