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Abstract
This article presents an independence test between pairs of interval censored failure times. The Mantel-

Haenszel test is commonly applied to test the independence between two categorical variables accompanied with
a strata variable. Hsu and Prentice (1996) applied a Mantel-Haenszel test to the sequence of 2 × 2 tables formed
at the grids which are composed of failure times. In this article, due to unknown failure times, the suitable grid
points should be determined and the status of failure and at risk are estimated at those grid points. We also
consider a weighted test statistic to bring a more powerful test. Simulation studies are performed to evaluate the
power of test statistics under finite samples. The method is applied to analyze two real data sets, mastitis data
from milk cows and an age-related eye disease study.

Keywords: bivariate interval censored data, Clayton model, Gumbel model, independence test,
Mantel-Haenszel test

1. Introduction

Interval censored data commonly arise in observational studies where the exact occurrence time of
the event is unobservable but two inspection times including it are available. When (Ti1,Ti2) is a pair
of failure times from the ith subject, a bivariate interval censored data is composed of two pairs of
inspection times {(Li1,Ri1] × (Li2,Ri2], i = 1, . . . , n}, where the inspection times satisfy Lik < Tik <
Rik(k = 1, 2) and are assumed to be independent of the failure times.

For right censored data, several approaches for testing the independence have been proposed.
Oakes (1982) developed a concordance test based on the estimated Kendall’s τ and Shih and Louis
(1996) constructed a test based on the martingale residual and considered its extension by imple-
menting several weights to reflect a time-varying association. Hsu and Prentice (1996) suggested a
generalization of the Mantel-Haenszel test by combining the sequence of 2 × 2 tables formed at the
grids on a plane where the grids are composed of a pair of observed failure times.

These above approaches have been extended to test the independence of bivariate interval censored
data. Betensky and Finkelstein (1999) applied a multiple imputation technique for missing failure
times and then implemented the method Oakes (1982) proposed. In their approach, simulated bivariate
failure times are generated from the estimated joint survival distribution and are utilized to calculate
Kendall’s τ. Sun et al. (2006) estimated the association measure of a Clayton copula by extending
Wang and Ding (2000)’s two-stage procedures. As a parametric approach, Bogaerts and Lesaffre
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(2008) assumed a bivariate log-normal distribution for (T1,T2) and derived a two stage procedure
to calculate a local measure such as a cross ratio function. For testing the association, Ding and
Wang (2004) constructed test statistics for bivariate current status data, which is sometimes denoted
as interval censoring case I by extending the Hsu and Prentice (1996)’s method. In this article, we
extend the Mantel-Haenszel test to bivariate interval censored data by constructing dependent 2 × 2
tables formed at the emulated grid points and by assigning the estimated number of failures and that
of at-risk to the cell of each table. This article is organized as follows. In Section 2, we introduce the
model and develop the estimation procedure. Simulation and data analysis are given in Section 3 and
4, respectively. A discussion about the suggested method is provided in Section 5.

2. Independence test for bivariate interval censored data

2.1. Preliminary

In this paper, our interest is to develop a nonparametric procedure for testing the independence of
bivariate interval censored data. Denote F(t1, t2) = Pr(T1 ≤ t1,T2 ≤ t2), F1(t1) = Pr(T1 ≤ t1) and
F2(t2) = Pr(T2 ≤ t2) as the joint distribution and marginal distributions of (T1,T2), respectively.
When H0 : T1 ⊥ T2 is true, then F(t1, t2) = F1(t2)F2(t2) is valid. For bivariate right censored data,
{(Xi1, δi1), (Xi2, δi2), i = 1, . . . , n} denotes observation times and censoring indicators, respectively,
where Xik = min(Tik,Cik) for failure time Tik and the censoring time Cik and δik = I(Tik ≤ Cik),
k = 1, 2. The grid points are formatted using the observed failure times Xik satisfying δik = 1 and
composed of ν11 < ν12 < · · · < ν1m1 for the first event and ν21 < ν22 < · · · < ν2m2 for the second
one, respectively. Thus, the information from m1 × m2’s tables are evaluated. For each grid point
{(ν1r, ν2l), r = 1, . . . ,m1, l = 1, . . . ,m2}, T(ν1r, ν2l) denotes a 2 × 2 table with a value (0,1) repre-
senting a non-failure and a failure, respectively. Then, the four cells at T(ν1r, ν2l) are denoted as
(D00(ν1r, ν2l),D01(ν1r, ν2l),D10(ν1r, ν2l),D11(ν1r, ν2l)), where,

Dab (v1r, v2l) =

n∑
i=1

Yi1 (ν1r) Yi2 (ν2l) I (dNi1 (ν1r) = a, dNi2 (ν2l) = b) , a = 0, 1; b = 0, 1,

and where Yik(s) = I(Xik ≥ s), k = 1, 2 denotes a risk process and Nik(s) = I(Tik < s, δik = 1)
denotes a counting process with dNik = Nik(s) − Nik(s−), respectively. Then the margins are defined
as D+b(ν1r, ν2l) = D0b(ν1r, ν2l) + D1b(ν1r, ν2l) and Da+(ν1r, ν2l) = Da0(ν1r, ν2l) + Da1(ν1r, ν2l). For
example, D1+(ν1r) denotes the total number of the first event at ν1r and D+1(ν2r) denotes the total
number of the second event at ν2r, respectively. Let D̄rl = D00(ν1r, ν2l) + D01(ν1r, ν2l) + D10(ν1r, ν2l) +

D11(ν1r, ν2l) be the number of pairs at risk at (ν1r, ν2l). Conditional on the margins, D11(ν1r, ν2l) follows
a hypergeometric distribution with the following conditional expectation

E11 (ν1r, ν2l) =
D1+ (ν1r, ν2l) D+1 (ν1r, ν2l)

D̄rl
.

If all tables are independent, the summation of the differences between observed and expected num-
bers would follow an asymptotic normal distribution. Since all the tables are formed at failure times
and are related through the risk processes, they are not independent, and thus, the sum does not have
a same asymptotic property as that of an ordinary Mantel-Haenszel test statistic. Hsu and Prentice
(1996) rewrote the Mantel-Haenszel test statistic in terms of a counting process in order to derive the
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large sample properties based on the martingale theory,

S̃ =

m1∑
r=1

m2∑
l=1

(
D11 (ν1r, ν2l) −

D+1 (ν1r) D1+ (ν2l)
D̄rl

)

=

n∑
i=1

∫ τ1

0

∫ τ2

0

(
Ni1 (dt1) Ni2 (dt2) −

1
n

R̄ (t1, t2) N·1(dt1)N·2 (dt2)
)

=

n∑
i=1

∫ τ1

0

∫ τ2

0

(
M̂i1 (dt1) M̂i2 (dt2) −

1
n

R̄ (t1, t2) M̂·1 (dt1) M̂·2 (dt2)
)
,

(2.1)

where τk denotes the maximum follow-up time of a type k event. R̄(t1, t2) =
∑n

i=1 I(Xi1 ≥ t1, Xi2 ≥

t2) denotes the total number of at-risk subjects at (t1, t2) and a martingale M̂ik(dt) is defined as
M̂ik(dt) = Nik(dt) − YikΛ̂k(dt) with the Nelson-Aalen estimate Λ̂k(t) =

∑
X jk≤t dN jk(t)/Y jk(t) where

Y jk(t) =
∑nk

l=1 I(Xlk ≤ t).

2.2. Suggested method

The first step to apply the Mantel-Haenszel test to the interval censored data is to format suitable grid
points due to unknown exact failure times. In our approach, grid points are composed of the pseudo
failure times derived from the interval censored data, {(Li1,Ri1, Li2,Ri2), i = 1, . . . , n}. These pseudo
failure times {sk1 < sk2 < · · · < skmk , k = 1, 2} are constructed from the equivalence set {(lkl , r

k
l )mk

l=1} of
the univariate interval censored data (Sun, 2006) and defined as skl = (lkl + rk

l )/2.
The second step is to define the test statistic at the grid points by extending (2.1),

S =

m1∑
r=1

m2∑
l=1

(D11 (s1r, s2l) − E11 (s1r, s2l)) , (2.2)

where D11(s1r, s2l) denotes the number of pairs with both failures at (s1r, s2l), and E11(s1r, s2l) =

E(D11(s1r, s2l)|H0) represents a conditional expectation of D11 under H0. Here E11(s1r, s2l) is esti-
mated as R(s1r, s2l)λ1(sir)λ2(s2l), where R(s1r, s2l) represents the risk set, λ1(s1r) and λ2(s2l) marginal
hazards, respectively. However, D11(s1r, s2l) and E11(s1r, s2l) are unknown under the interval censored
data and calculated by,

D̂11 (s1r, s2l) =

n∑
i=1

αirl frl∑m1
u=1

∑m2
v=1 αiuv fuv

=

n∑
i=1

f̃irl, (2.3)

Ê11 (s1r, s2l) = rrlλ̂1 (s1r) λ̂2 (s2l) ,

where αirl = I(Li1 < s1r ≤ Ri1, Li2 < s2l ≤ Ri2) and frl = Pr(T1 = s1r,T2 = s2l) is the joint probability
mass function. rrl = R̂(s1r, s2l) denotes the estimated risk set size at (s1r, s2l) and is obtained by,

rrl =

n∑
i=1

m1∑
r≤u

m2∑
l≤v

f̃iuv.

Let gr = Pr(T1 = s1r) and hl = Pr(T2 = s2l) be the marginal probability mass functions. Denote
βir = I(Li1 < s1r ≤ Ri1) and γil = I(Li2 < s2l ≤ Ri2). Then λ1 and λ2 are estimated by

λ̂1 (s1r) =
D̂1 (s1r)
Y1 (s1r)

, λ̂2 (s2l) =
D̂2 (s2l)
Y2 (s2l)

,
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where for the first event

D̂1 (s1r) =

n∑
i=1

βirgr∑m1
u=1 βiugu

=

n∑
i=1

g̃ir, Y1 (s1r) =

n∑
i=1

m1∑
r≤u

g̃iu (2.4)

and for the second event,

D̂2 (s2l) =

n∑
i=1

γilhl∑m2
v=1 βivhv

=

n∑
i=1

h̃il, Y1 (s2l) =

n∑
i=1

m2∑
l≤v

h̃iv. (2.5)

Finally, the joint probability and marginal probabilities defined at (2.3), (2.4) and (2.5) are es-
timated by a well-known self-consistency algorithm (Sun, 2006; Maathuis, 2013). The likelihood
function

L ( f ) =

n∏
i=1

∑
r=1

∑
l=1

αirl frl,

where the NPMLE of f is determined by maximizing the L( f ) subject to frl > 0 and
∑

rl frl = 1.
After obtaining f̂rl, the marginal probability mass functions are defined as ĝr =

∑
l f̂rl and ĥl =

∑
r f̂rl,

respectively.
The explicit estimation for the variance of test statistic (2.2) is technically complicated since it is

related with the complexity of the nonparametric maximum likelihood estimators (NPMLEs) of fkl, gk

and hl. Therefore, the bootstrap method is adopted to obtain the variance estimation in this article.
In detail, we generated a bootstrap sample {(L∗i1,R

∗
i1, L

∗
i2,R

∗
i2, δ

∗
i1, δ

∗
i2), i = 1, . . . , n} from the original

sample. The procedure is repeated B times and brings S ∗b =
∑m∗1,b

k=1
∑m∗2,b

l=1 (D∗11(s1k, s2l) − E∗11(s1k, s2l)),
b = 1, . . . , B as the bootstrap statistics for (2.2). Then, the variance was calculated by the sample
variance of S ∗b, b = 1, . . . , B. That is,

σ2∗ =

B∑
b=1

(
S ∗b − S̄ ∗

)2

B − 1
, S̄ ∗ =

B∑
b=1

S ∗b

B
.

The resulting test statistic Q∗ = S/
√
σ2∗ is assumed to follow a standard normal distribution under

the null hypothesis. Here B = 200 is implemented.
In order to improve the power of a test, the above test statistics can be generalized by implementing

a weight function Ŵ(t1, t2),

S W =

m1∑
k=1

m2∑
l=1

Ŵ (s1k, s2l) (D11 (s1r, s2l) − E11 (s1r, s2l)) , (2.6)

where the weight function can be chosen to emphasize the difference at the specific regions during
follow-up times. For example, Ŵ(t1, t2) = {Ŝ 1(t)Ŝ 2(t2)}ρ{(1− Ŝ 1(t1))(1− Ŝ 2(t2)}λ, where the Gρ,λ class
was introduced by Harrington and Fleming (1982).

3. Simulation study

We performed a series of simulations to evaluate the finite sample performance of the proposed tests.
Bivariate failure times (T1,T2) are generated from the Clayton family and the Gumbel family using
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Table 1: Empirical powers of Unweighted (U) and Weighted (W) test under Clayton model

n Censoring W τ : Association
0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

50
0% U 0.050 0.086 0.202 0.284 0.420 0.552 0.640 0.785 0.830

W 0.040 0.062 0.130 0.270 0.432 0.632 0.797 0.868 0.936

40% U 0.044 0.088 0.124 0.147 0.256 0.331 0.522 0.616 0.774
W 0.038 0.086 0.120 0.238 0.328 0.504 0.702 0.824 0.918

100
0% U 0.058 0.124 0.283 0.488 0.766 0.900 0.980 0.986 0.997

W 0.056 0.108 0.286 0.510 0.774 0.938 1.000 1.000 1.000

40% U 0.054 0.110 0.142 0.288 0.446 0.530 0.723 0.912 0.996
W 0.050 0.102 0.200 0.368 0.636 0.816 0.932 0.974 0.998

200
0% U 0.047 0.198 0.400 0.748 0.916 1.000 1.000 1.000 1.000

W 0.056 0.188 0.494 0.866 0.986 1.000 1.000 1.000 1.000

40% U 0.060 0.110 0.250 0.470 0.714 0.910 0.974 0.995 1.000
W 0.058 0.132 0.362 0.688 0.916 0.984 1.000 1.000 1.000

Table 2: Empirical powers of Unweighted (U) and Weighted (W) test under Gumbel model

n Censoring W τ : Association
0 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

50
0% U 0.069 0.098 0.098 0.204 0.244 0.346 0.468 0.584 0.656

W 0.044 0.086 0.092 0.148 0.272 0.372 0.536 0.644 0.726

40% U 0.056 0.058 0.056 0.092 0.108 0.140 0.184 0.260 0.330
W 0.046 0.072 0.112 0.204 0.360 0.524 0.672 0.818 1.000

100
0% U 0.068 0.100 0.140 0.266 0.426 0.562 0.680 0.850 0.928

W 0.048 0.110 0.192 0.368 0.468 0.748 0.832 0.954 0.988

40% U 0.052 0.056 0.074 0.092 0.148 0.250 0.295 0.378 0.478
W 0.048 0.088 0.208 0.368 0.640 0.818 0.922 0.974 0.998

200
0% U 0.050 0.140 0.273 0.426 0.700 0.847 0.943 0.997 1.000

W 0.070 0.090 0.350 0.626 0.856 0.954 1.000 1.000 1.000

40% U 0.050 0.060 0.065 0.190 0.227 0.390 0.437 0.590 0.750
W 0.066 0.138 0.382 0.676 0.918 0.982 0.998 1.000 1.000

R package CopulaCenR (Sun and Ding, 2019). (i) A Clayton family is known as a gamma frailty
model, where the cross ratio θ(t1, t2) = λ1(t1|T2 = t2)/λ1(t1|T2 > t2) = λ2(t2|T1 = t1)/λ2(t2|T1 > t1) is
constant over the time and (ii) a Gumbel family has a decreasing cross ratio with increasing t1 or t2.

We generated 10’s random numbers h1 < · · · < h10 from the uniform distribution U(0, q) to
construct the inspection times satisfying Lk = hl−1 < Tk < hl = Rk. Here, q is determined to set a given
censoring rate. Two cases were considered, no right censoring (0%) and 40% right censoring on each
margin. We calculated test statistics and corresponding variance in order to evaluate the performance
by the empirical power, which is defined as the relative frequency by which the test rejects the null
hypothesis at the 0.05 nominal level based on 500 replicates. The power pattern was investigated under
the combination of nine τ values ranging from 0 to 0.4 and three sample sizes (n = 50, 100, 200). The
results of two test statistics (unweighted and weighted test (W(t1, t2) = S 1(t1)S 2(t2))) are presented
in Table 1 (Clayton family) and in Table 2 (Gumbel family). Figure 1 shows the Q-Q plot of test
statistics under (i) unweighted (ii) weighted versions with W to check the normality under n = 100
and 40% censoring and those plots show they satisfy the normal distribution.

According to the result of Table 1 (Clayton family with constant cross hazard), the type I errors
of the unweighted test are very close to the 0.05 nominal level. Type I errors of the weighted test are
smaller than the nominal size at small sample sizes but have similar values with the nominal value as
the sample size increases.
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Figure 1: Q-Q plot of test statistic (unweighted and weighted) at n = 100.

The powers of both test statistics increase as the association and sample size become greater.
Under the 40% censoring rate, two test statistics show smaller powers compared with the no censoring
case. However, the weighted test statistic shows a higher power than the unweighted one as the
association gets stronger and the sample size increases.

Table 2 shows the result related with the Gumbel family and indicates an overestimated type I error
with a small sample size and no censoring. In particular, the weighted test statistic gives a remarkable
power improvement even when the censoring rate is large. Although the sample size increases, the
unweighted test statistic does not show a significant improvement of power under heavy censoring.

4. Data analysis

4.1. Mastitis data

Mastitis in dairy cattle is an inflammation of the udder and reduces the milk production and the
quality of the milk (Bogaert et al., 2018). In the analysis, 100 cows were screened monthly at the
udder quarter level for bacteria infection. Monthly visits were independently performed and results
in interval-censored data. When there no infection occurs before the end of study, it is regarded as
right-censored. Denote T1,T2,T3 and T4 as the infection times of the rear and front udders at side
1 and those of the rear and front udders at side 2, respectively. Right censoring rates are 19, 20,
22 and 22%, respectively. Table 3 shows the result of three test statistics; unweighted S , S w1 with
W(s, t) = S 1(s)S 2(t) and S w2 with W(s, t) = (1 − S 1(s))(1 − S 2(t)) at (2.6). According to the results,
the unweighted test statistic S and the weighted test statistic S w2 with weight emphasizing the latter
association yield insignificant result while the weighted test statistic S w1 with weight emphasizing the
early dependency yields a significant result. Figure 2 shows the rectangle plot of (T1,T2) from use of
MLEcens package (2013) and indicates most rectangles posit at the left lower part, which means the
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Table 3: Independence test of infection times between udder quarters

S se p-value S w1 sew1 p-value S w2 sew2 p-value
(T1,T2) −7.198 4.565 0.115 −5.073 1.260 <0.001 −3.374 1.946 0.083
(T1,T3) −2.695 4.110 0.512 −3.494 1.071 <0.001 −2.562 1.955 0.098
(T1,T4) −7.510 4.979 0.131 −5.591 1.000 <0.001 −2.867 1.709 0.935
(T2,T3) −1.962 4.776 0.681 −4.290 1.011 <0.001 −3.159 2.061 0.126
(T2,T4) −3.195 4.564 0.484 −6.038 1.479 <0.001 −2.187 1.584 0.167
(T3,T4) 1.164 4.135 0.778 −4.813 1.059 <0.001 −1.618 1.358 0.233

0 100 200 300 400

0
1
0
0

2
0
0

3
0
0

4
0
0

(T1 VS. T2)

Figure 2: Rectangular plot of inflammation times at two udders.

S w1 focusing on early association has a more significant p-value.

4.2. AREDS data

For the second real data, an age-related eye disease study (AREDS) was analyzed (Sun and Ding,
2019). Our interest is to investigate the association of the time to late age-related molecular disease
(AMD) between two eyes. The dataset includes 629 Caucasian patients who had at least one eye in
moderate AMD stage at baseline. Each patient was examined every six months in the first six year and
then every year after year 6. For the j (= 1, 2)th eye of the subject i, Li j denotes the last assessment
time when the eye was free from AMD and Ri j denotes the first assessment time when the eye was
diagnosed with AMD. The censoring rate is 46.7% and 44.5% of the left and right eyes, respectively.
For investigating the association between the two eyes, the unweighted test statistics yielded S =

60.83 with a corresponding standard error se(S ) = 7.08 and p-value < 0.001, which means the two
eyes were correlated in term of the progression of the disease. When two weighted test statistics are
applied, (i) S w1 = 45.668, sew1 = 3.780 and p-value < 0.001, and the (ii) sew2 = 2.857 , sew2 = 0.706
and p-value < 0.001, respectively. Figure 3 shows the rectangles of the bivariate interval censored
late AMD time for between two eyes. Compared with the mastitis data set in Figure 2, the rectangle
is uniformly displayed.
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Figure 3: Rectangular plot of AMD occurrence times of two eyes.

5. Concluding remarks

We have suggested a generalized Mantel-Haenszel test to test the independence between two interval
censored failure times. The proposed test procedures are based on the pseudo occurrence times derived
from the equivalence set and the corresponding estimated occurrence numbers and the risk set sizes
under H0. The variance of the suggested test statistic was constructed using a bootstrap technique.
The weighted test statistics give a somewhat different result according to the censoring rate, sample
size and association pattern. Simulation results show that the test with more weights at the early time
region seems to have desirable powers even at high censoring rates. Considering the relation between
censoring and weight, we analyzed the mastitis data, which shows a very different result between
the two different weighted and unweighted version. Therefore, the application of a suitable weight is
very essential procedure for testing the independence of bivariate failure times. In our data analysis, in
Figure 2, most rectangles are located at the lower right part where S w1 yields significant p-values while
the other test statistics are insignificant. Meanwhile, Figure 3 shows uniformly distributed rectangles
and these rectangle plots would be a good indicator to select suitable weights. As for related studies,
the weighted Mantel-Haenszel test that combines the subject-specific covariate can be considered.
Alternatively, the copula based score test reflecting the subject-specific covariate is suggested and is
extended to the bivariate case (Sun et al., 2019; Sun and Ding, 2021).
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