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Abstract

The study of immune cellular composition has been of great scientific interest in immunology because of the
generation of multiple large-scale data. From the statistical point of view, such immune cellular data should be
treated as compositional. In compositional data, each element is positive, and all the elements sum to a constant,
which can be set to one in general. Standard statistical methods are not directly applicable for the analysis of
compositional data because they do not appropriately handle correlations between the compositional elements.
In this paper, we review statistical methods for compositional data analysis and illustrate them in the context
of immunology. Specifically, we focus on regression analyses using log-ratio transformations and the alternative
approach using Dirichlet regression analysis, discuss their theoretical foundations, and illustrate their applications
with immune cellular fraction data generated from colorectal cancer patients.

Keywords: compositional data, compositional regression, Dirichlet regression, immunology, imm-
uno-oncology, log-ratio transformation

1. Introduction

The human immune system consists of various types of immune cells (e.g., T cells, B cells, natu-
ral killer (NK) cells, dendritic cells, among others). Upon viral infection, tissue transplantation, or
disease occurrence, dynamic and extensive interaction among these immune cell types occurs in the
human body. Hence, in the study of the human immune system, it is of great interest to understand
composition, differentiation, and activities of various types of immune cells, and interactions among
them. The composition of these immune cells is also associated with cancer progression, adverse
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Figure 1: Immune Landscape of Cancer data and immune cell type composition within the tumor microenviron-
ment of each cancer patient.

events, and response to cancer immunotherapy, especially immune checkpoint blockades including
Anti-PD1 and Anti-CTLAA4.

Along with the interest in this association, there is a movement to gather immune cellular infor-
mation and clinical information together. In the immunology field, multiple types of assays are used
to interrogate such immune cellular composition, including flow cytometry and single cell RNA-seq.
In addition, multiple computational algorithms have also been proposed to estimate immune cellular
composition by deconvolving bulk gene expression data, where popular algorithms include CIBER-
SORT (Newman et al., 2019). Recognizing the importance of understanding the immune cellular
composition, and the emergence of these computational algorithms and relevant assays, have led to
the generation of multiple large-scale immune cellular composition datasets. For example, the Im-
mune Landscape of Cancer generated a large-scale immuno-genomic dataset from more than 10,000
patients with 33 different cancer types based on the Cancer Genome Atlas (TCGA) data (Thorsson et
al., 2018). Figure 1 illustrates the Immune Landscape of Cancer, which provides information about
immune cell composition within the tumor microenvironment of each cancer patient, along with corre-
sponding clinical information. This new type of data motivates the investigation of relevant statistical
methods that can consider key characteristics of these datasets. Effective analysis of such datasets
can potentially support development of diagnosis and treatment strategies for various diseases such as
cancer and autoimmune diseases.

From the statistical point of view, such immune cellular data can be considered as compositional,
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since it carries relative information only in the form of proportions of a total amount, summing to
1 in each sample. John Aitchison was a pioneer in the statistical formulation of compositional data
analysis, and developed the relevant geometry, metrics, and a guideline for the application of various
statistical methods in this context. The constituent cellular fractions are defined on the Aitchison
simplex, not in Euclidean space. The Aitchison simplex, S?, is a sample space for compositional
data, and is defined as

D
sP = {(vl,vz,...,vl)) v 20,d=1,...,D, ) vy = 1}, (1.1)

d=1
where vy,...,vp are non-negative components of a D-part composition. The dimension of S? is

D — 1 due to the constant sum constraint. Aitchison (1986) introduced statistical methods based on
log-ratios, which are still most popularly used to analyze compositional data (in this case the compo-
sitional parts in (1.1) should be strictly positive). The method is invariant to scaling of compositions,
called scale invariance, which gives coherent results regardless of multiplication of a row (composi-
tion) of the initial data by an arbitrary positive constant. The R environment includes several packages
developed for the log-ratio approach, for example, compositions (van den Boogaart and Tolosana-
Delgado, 2008), robCompositions (Templ et al., 2011), and easyCODA (Greenacre, 2018).

Maier (2014) asserted that it is often not straightforward to interpret the results from data analyses
using log-ratio transformations and, in addition, these methods can often violate modeling assump-
tions such as homoscedasticity. As an alternative approach, Dirichlet regression was proposed, origi-
nally suggested as a null model for compositional data by Campbell and Mosimann (1987). Hijazi and
Jernigan (2009) developed the maximum likelihood estimation methods for Dirichlet regression and
also investigated the sampling distributions of the estimates. Camargo et al. (2012) introduced a new
approach for estimating the Dirichlet model when each parameter has a linear structure on covariates
and suggested a Bayesian model selection method.

These ongoing discussions are to determine optimal statistical strategies for compositional data
analysis. Following the trend, in this paper, we aim to give a guideline for the statistical approaches
of compositional data analysis in the context of immunology data: firstly, modeling using standard re-
gression analysis with log-ratio transformations, and secondly, the approach using Dirichlet regression
analysis.

This paper is structured as follows. In Section 2 we introduce the immune cellular fractions
data for colorectal cancer, and the two compositional regression approaches, log-ratio regression and
Dirichlet regression, which have been applied to this dataset. Section 3 gives the results of these
alternative modeling approaches. Section 4 summarizes the key findings of this paper and comments
on the similarities and differences of the two approaches.

2. Material and methods
2.1. Colorectal cancer data

In this paper, we focus on the analysis of the immune cellular fractions data of colorectal adenocar-
cinoma patients, generated from the Immune Landscape of Cancer project (Thorsson et al., 2018).
Specifically, there are 254 colorectal adenocarcinoma patients, 58 (23%) of which are African Amer-
icans (AA) and 196 (77%) are European Americans (EA). These patients are almost equally divided
between females and males, 126 and 128, respectively. Motivated by previous studies showing sig-
nificant racial disparity in clinical outcomes (King Thomas et al., 2019; Curran et al., 2021), we
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focus here on investigating associations of immune cell compositions with race, while we also look
at their possible relationships with age. In the Immune Landscape of Cancer, the immune cellu-
lar fractions were estimated by deconvolving the gene expression data of the TCGA PanCancer
study using the CIBERSORT algorithm (Newman et al., 2015). Thorsson et al. (2018) provided
three different aggregations of immune cell types, of which we use Aggregate 2. Specifically, it
consists of nine immune cell types: CD8* T cells (labeled as T.cells.CD8 or T.CD8), CD4* T
cells (T.cells.CD4 or T.CD4), B cells (B.cells or B), NK cells (NK.cells or NK), macrophage
(Macrophage or Macro), dendritic cells (Dendritic.cells or Dendr), mast cells (Mast.cells or
Mast), neutrophils (Neutrophils or Neutr), and eosinophils (Eosinophils or Eosin).

2.2. Log-ratio approaches

In this section, we describe how to apply the log-ratio regression model to the colorectal cancer data.
Since this approach involves computing logarithms of ratios, zero values need to be replaced, which
can be done in several ways (Lubbe et al.,, 2021). In this study we used the k-nearest neighbours
(KNN) approach of Hron et al. (2010).

In the context of colorectal cancer data, we are mainly interested in racial differences in immune
cellular compositions. To investigate this relationship using log-ratio regression models, the immune
cellular compositions composed of the D = 9 immune cells are used as multivariate responses and
race and/or age as explanatory variables.

The key step in the log-ratio approach is to choose a set of log-ratio transformations, which convert
all the compositions on the Aitchison simplex to multivariate vectors on interval scales in a regular Eu-
clidean space. We can then proceed to apply standard statistical analyses to the log-ratio transformed
data, with some care taken in the way the results are interpreted. The widely used sets of log-ratio
transformations are the additive log-ratios (ALRs) (Aitchison, 1982), the centered log-ratios (CLRs)
(Aitchison, 1982), and isometric log-ratio (ILRs) (Egozcue et al., 2003). All of these transformations
can be written as log(v)-Q", where log(v) is the row vector of compositional values transformed by the
natural logarithm, and Q is a matrix with each row summing to zero — see, for example, Greenacre
(2022).

The ALR transformations are the easiest to understand and interpret, since they can be simply
calculated by taking D — 1 pairwise logratios with respect to a fixed denominator part, taken here as
the last part:

ALR () = (log :—; ..., log V’V)—;‘ = log(v) - QL . 2.1

where the (D—1)xD matrix Qapg is the (D—1)x(D-1) identity matrix with an additional D-th column
of all —1 values. Although technically the ALR transformations do not preserve exact isometricity,
the denominator can be chosen to give a transformation close to being isometric (Greenacre et al.,
2021). An isometric transformation is one that engenders the exact logratio geometry of all pairwise
logratios (see, for example, Greenacre, 2019). The ALR transformation has a intuitive interpretation
due to its simple definition, which is advantageous for practical applications.
The CLR transformations are defined as

V1 12)) T

CLR (v) = [log R .,log g(v)) =log(v) - Qcrgr> 2.2)
where g(v) is the geometric mean {/v; - v, ---vp. The D X D matrix Qcrr has all off-diagonal values
equal to —1/D and diagonal values equal to 1 — 1/D. The D CLR transformations are symmetric with
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respect to the compositional components and they are isometric. The fact that the set of CLRs has
a singular covariance matrix (Egozcue et al., 2003) is of no consequence to our present purpose of
performing log-ratio regression.

Finally, the ILR transformations are the most complicated choice, both to define and interpret. It
is also defined as a linear transformation

ILR (v) = log (V) - Qf x, (2.3)

where the (D — 1) X D matrix Qg has rows that contrast groups of compositional parts as ratios of
their geometric means, along with an additional scalar multiplier. This set of transformations is used
when the interpretability of the transformation is of less importance than its properties of having a
nonsingular covariance matrix and being isometric. A special case of ILR transformations is the set
of pivot log-ratios (Filzmoser et al., 2018), where single components are in the numerator of each
ratio and the geometric means of the remaining components in the particular ordered sequence are
in the denominator. The problem here would be to decide what that ordered sequence should be,
since there are D! orderings. Again it should be noted that for the present purpose of compositional
regression, the final results will be equivalent no matter which log-ratio transformation is chosen (see
below, when the result is expressed as a log-contrast). Hence, if simplicity and interpretability are
regarded as important, then the ALR transformations will be preferred.

When we use the ALR transformation, we need to decide which denominator part to choose.
Since this choice will not affect our results, the fixed denominator can be chosen on substantive
grounds to make the interpretation of the results more meaningful, or it can be chosen to optimize
some favourable property. For example, Greenacre et al. (2021) showed how to choose the denom-
inator that gives the set of transformations closest to being isometric. The Procrustes correlation
(Gower and Dijksterhuis, 2004; Legendre and Legendre, 2012) can be used to measure the similarity
of the geometry based on an ALR-transformation, with only D — 1 variables, to the geometry based
on all D(D — 1)/2 pairwise log-ratios (Greenacre, 2019), sometimes called the Aitchison geometry.
The same correlation can be used if an even smaller subset of pairwise log-ratios is selected and we
want to measure how close to isometry they are, since it often happens that less log-ratios can be used
to make the results more parsimonious (Greenacre, 2019; Graeve and Greenacre, 2020).

As said above, once the data have been log-ratio transformed, then standard statistical analysis can
be used. Thus, multiple regression models on the log-ratio transformed data can be written as follows,
for the j-th log-ratio LR of a set of transformations for j = 1,2,...,D — 1 or D, where LR can be
ALR, ILR or CLR:

LRj(V)ZCZj+ﬁj.X1+’)/j.X2+ej, (24)

where «, B, and y; are regression coeflicients, xi, x are the two explanatory variables, race (dummy
variable) and age in this case, and e; is a random error with mean O and a constant variance.

Once the set of log-ratio regressions (Equation (2.4)) is performed for each log-ratio j, then the
coefficients 8; and y; for the two predictors can be inversely transformed (Van den Boogaart and
Tolosana-Delgado, 2013; Greenacre, 2022) to give a log-contrast on v of the form (for each predictor)

¢1log(vy) + pplog(va) + -+ + ¢plog(vp), where Z ¢;=0. 2.5)
J

This result shows how the compositional response, on a log-scale, is affected by a unit change in the
predictor, as estimated by the set of log-ratio regressions. In the case of the dummy variable predictor
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for race, where EA = 0 and AA = 1, the coefficients show the “effect” of AA compare to EA. When
Equation (2.5) is exponentiated, the ¢;’s are seen to be the estimated multiplicative effects, since the
exponentiated log-contrast has this form: v}’ vﬁz e v‘g”. The coefficients ¢; of the log-contrast will be
the same no matter which log-ratio transformation, ALR, CLR or ILR, is used. This further justifies
using the ALR transformation, which not only produces the correct log-contrast result but also has
an easier interpretation of the responses in the original log-ratio regressions (Equation (2.4)). When
log-ratios are used as predictors, there is a similar result — no matter which complete set of log-ratios
is used, they all lead to the same log-contrast (Coenders and Pawlowsky-Glahn, 2020).

When it comes to visualizing compositional data by a dimension-reduction method such as princi-
pal component analysis (PCA), then CLR-transformed data are used, since the PCA of the CLRs has
been shown to be equivalent to the PCA of all pairwise log-ratios (Aitchison and Greenacre, 2002).
The PCA of CLR-transformed data has thus been called log-ratio analysis (LRA) (Greenacre, 2010).
Here there is an issue whether to weight the parts or not, which is usually decided when comparing the
variance contribution of the parts to the total variance, since it often occurs — as in this application —
that rare parts contribute excessively to the total variance. With weights wy,d = 1,..., D, equal to the
average compositional proportions, the total variance is then computed equivalently in two different
ways as follows:

TotVar = Z wdcrf, (2.6)

d
_ 2
- 3 3 o

d<h

using either the variances 0'(21 of the CLRs or the variances 0'3 , of the pairwise logratios of the d-th
and h-th parts (Greenacre, 2021).

2.3. Dirichlet approaches

The Dirichlet distribution

The Dirichlet distribution models the probability of a multinomial random variable, that is a random
composition v = (v{,v,,...,vp) where v; € [0, 1] and ), vs = 1. The Dirichlet distribution has shape
parameters & = (ay, ..., ap)" for the D respective components. The probability density function (pdf)
is defined as

1
B(a

T2, T (@)
T (S o)

where B(-) and I'(-) are the Beta and Gamma functions, respectively. The marginal distributions of
the Dirichlet distribution are all Beta distributions. For each component d, the mean and variance of
the marginal Beta distribution are E[v;] = a4/a, and Var[v,] = [eq(as — @y)]/ [ozi(onr + 1)], where
ay = Y, 4. a4 is a measure of dispersion (or precision) of the distribution, with high values of @,
indicating higher density around the expected values.

D(vja) =

D
1_[ vzd_l, where B(a) =
d=1

~

Estimation of Dirichlet regression coefficients
The Dirichlet regression provides an alternative to log-ratio regression for the modeling of composi-

tional data responses, and establishes the relationships between the parameters of the Dirichlet dis-
tribution and linear functions on the covariates. The regression model should be fitted for each «.
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Suppose that there are independent random vector variables Vi, ..., V,, where V; = (V;y,..., Vip) for
i =1,...,n satisfying 25:1 via = 1 for observed v;; for Vi;. In addition, we assume that given the
covariate row vector X; = (x;, ..., xj,) corresponding to i-th observation, V;|X; follows the Dirichlet
distribution with shape parameters (a;i, . . ., @;p), each of which satisfies for observed covariates x;,

Qig = hy (ﬂdﬂm + e +ﬁdpxip) = hy (ﬂ;Xi),

where B, = {Ba), k = 1,..., p, is a vector of regression coefficients. Here, each function 4; : R —
(0, 0) is an three times differentiable injective function. The functions 4, work in the analogous way
that the link function in generalized linear models does. We also assume that h; = h, especially
designated by the log function (Gueorguieva et al., 2008; Melo et al., 2009; Maier, 2014). Therefore,
the relation can be re-written for each element of @, = {«;4} as

log (@ig) = BYxi,  i=1,2,...,n.

The unknown regression coefficients By are estimated by using maxim likelihood method, through
the derivatives of the log-likelihood function given by,

n D D D
UEDY {log r (Z aid] ~ > logT (aia) + ) (aig = ) log v,»d} :
d=1 d=1

i=1 d=1

There is no closed form solution, hence it must be calculated numerically using a nonlinear optimiza-
tion procedure. The invariance property of the maximum likelihood estimator (MLE) leads to obtain
the MLE @;; of {a;4} as

&g = exp (ﬂZx) 2.7)

In this manuscript, we employed the Dirichlet regression for analysis of the colorectal cancer im-
munology data, where immune cellular composition is considered as conpositional outcomes.

Dirichlet regression diagnostics

For model diagnostics of the Dirichlet regression, two types of residuals can be considered, namely
standardized residuals and composite residuals. For the d-th component and the i-th individual, stan-
dardized residuals r;; and composite residuals C; are defined as

id = E [Vial@i.
Tig = via — E 1Vidldi] ], and (2.8)
v Var (Vjy|&;.)
=" 29)
d
ford =1,2,...,D,and i = 1,2,...,n. Here, V,; is a random variable for v;; ford = 1,...,D and
i=1,...,n and &; is a D X 1 vector as (&,...,&;p) defined in Equation (2.7). The composite

residuals Equation (2.9) are obtained using equal weights to all standardized residuals Equation (2.8).

For the Dirichlet regression model, Gueorguieva et al. (2008) investigated its diagnostic approach
to identify influential observations utilizing score residuals, which can assess overall model fit through
overdispersion. First of all, Cook (1986) suggested the local measures of influence to detect obser-
vations with high leverages. Specifically, the local measures are constructed by assigning minimal
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weight to an observation in the likelihood (Cook, 1986), whereas the original Cook’s distance, which
is used for the global measures of influence, deletes an observation completely. The measure is defined
as

Sid
Gl ld) G’ (Z/ azd)

where @;4 is the maximum likelihood estimator of a;; defined in Equation (2.7), G(x) = dlogI'(x)/dx
is the digamma function, and a score residual s;; = G(3; &iq) — G(&;q) +1og viy. Note that the denomi-
nator of p;; reflects the amount of observed information of v;; that contributes to the estimation of the
parameter a;; (Gueorguieva et al., 2008).

Another important diagnostic tool for the Dirichlet regression is overdispersion, which evaluates
the goodness-of-fit of the model. The overdispersion is defined as an increase of the variance of a
response due to the lack of homogeneity in a parameter across observations (Zelterman and Chen,
1988). Zelterman and Chen (1988) derived overdispersion statistics when parameters are allowed to
have small amount of random variability in the response across observations. The test statistics are
to detect a lack of fit when the variability is larger than the expected variances. For a set of mutu-
ally independent response variables V; having the pdf D;(vi|le, ..., @;p), the homogeneity in each
parameter «;4 is satisfied when all «;;’s are identical across observations. Gueorguieva ef al. (2008)
provided test statistics for overdispersion consisting of the shape parameters «;; and coefficients 5.
For the Dirichlet regression model with the k-th covariates x; for the i-th observation, the overdisper-
sion statistic for testing homogeneity of the parameter «;; and the regression coefficient Sz is defined
as

Pid =

G = a2, d=1,2,...,D,i=12,...,n, (2.10)

with

(Y/d =G [Z &id) -G (&id) + sizd' (21 1)

i

In general, if sample variances of certain observations are larger than what is expected, the estimates
for 6{5(1“ are also getting larger accordingly.

3. Results
3.1. Log-ratio regression

In an initial investigation of the variances of the log-ratios, it was found that the rarer components
engendered high variances. Hence it was decided to use weighted analyses in the multivariate analyses
where the transformed components of the cell types are combined, for example in the computation
of total log-ratio variance as in Equation (2.6) or the computation of multivariate distances. Here the
default weights were the average proportions of the nine immune cell types, so that rarer cell types
have less weight than the more abundant ones. However, notice that the weighting does not affect the
log-ratio regressions, where the transformed compositions act as response variables.

Choice of ALR transformation

In order to select the denominator for the ALR transformation, Table 1 presents the Procrustes corre-
lations, in descending order, of the ALR-transformed data using each cell type in turn as denominator.
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Table 1: Correlations from the Procrustes analysis between the geometries of the different ALR transformations
and the exact geometry of all pairwise logratios, using each cell type in turn as denominator

Cell type Weight Procrustes correlation

Macro 0.453 0.989
T.CD8 0.142 0.920
T.CD4 0.165 0.909
Mast 0.088 0.860
B 0.072 0.851
NK 0.051 0.829
Dendr 0.017 0.689
Neutr 0.008 0.628
Eosin 0.003 0.569

Weight is the average proportion of all log-ratios in the weighted analysis.
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Figure 2: (Left) Weighted log-ratio analysis of the immune cell compositional dataset, showing the contribution

biplot. The African American samples are indicated by a cross, and the two ellipses are 95% confidence ellipses

for the group means, with the African American group on the right. (Right) The discriminant version where the
first dimension coincides with the group difference.

The weights in this table refer to the average proportions in the whole data set, which are used to
compute total log-ratio variance in Equation (2.6) and the exact log-ratio geometry. In this case, the
order of the correlations follows the weight of the denominator component. The higher the Procrustes
correlation, the more accurately the ALR transformation reflects the exact logratio structure. Hence
Table 1 shows that Macrophage is the reference part of choice, with a Procrustes correlation of 0.989.

Exploratory multivariate analyses of the immune cell compositions

Before doing the log-ratio regression, it is interesting to understand the multivariate structure of
the data set. Figure 2 shows the weighted LRA on the left, that is the weighted PCA of the CLR-
transformed data, where the two racial groups are coded into the label of the samples. This analysis,
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Figure 3: 95% confidence plots of the log-ratio means of the pairwise log-ratio on the left and the summated
log-ratio on the right. The dot indicates the mean, the box indicates the 50% confidence interval and the whiskers
extend to the 95% confidence interval.

with 29.9 + 22.1 = 52.0% of the total log-ratio variance explained shows that four immune cell types
dominate: Macrophage, T.cells.CDS, T.cells.CD4 and Mast.cells. On the right a discriminant version
of the structure is shown, where the first (horizontal) axis is specifically constrained to coincide with
the difference in the two group means of EA and AA. From this latter plot, it can be deduced that log-
ratios such as B.cells/Macrophage and T.cells.CD4/T.cells.CD8 are good discriminators of the two
groups, or even the amalgamation log-ratios of (B.cells+T.cells.CD4)/(Macrophage+T.cells.CDS),
called SLRs (summated log-ratios, see Greenacre et al., 2020). This can be demonstrated by making
95% confidence plots of the group means (Greenacre, 2016) and performing a statistical test of the
group differences, shown in Figure 3. If the confidence intervals do not overlap, this is a reliable
indication that the group means are significantly different, but the statistical test should nevertheless
be performed to confirm this result. The p-values are indeed both less than 0.05, with the summated
log-ratio having the greater separation and the lower p-value.

Linear regressions using log-ratio transformed responses

Each ALR-transformed log-ratio is regressed in turn on race, a dummy variable coding AA, and a
continuous variable for age. The estimated regression coefficients for these two variables are listed in
Table 2, along with their 95% Bootstrapped confidence intervals (10000 bootstrap replicates).

The coefficients present how much the ALR response is influenced multiplicatively by the ex-
planatory variable. For example, for AA the ratio B.cells/Macrophage is estimated as 66% higher
than the same ratio for EA. The fact that the confidence interval does not include 1 means that
this is a significant result, which has already been seen noted in Figure 3. Two other ALR ratios,
NK.cells/Macrophage and Eosinophils/Macrophage, have significant coefficients, showing 39% and
49% increase in AA, respectively. The coefficients of age for all responses are all close to 1, and their
confidence intervals all include 1, indicating that there is no significant effect of age on the responses.

The estimates for the ALR responses can be converted into log-contrast coefficients estimated for
individual compositional components. Figure 4 shows these coefficients, also expressed as multiplica-
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Table 2: Multiplicative coefficients for the the ALR transformed responses

race(AA) boot.Clace age boot.Cl,ge
T.CD8/Macro 1.0234 (0.7312 1.3902) 1.0019 (0.9927 1.0114)
T.CD4/Macro 1.6476 (1.2230 2.2024) 1.0004 (0.9889 1.0138)
B/Macro 1.6617 (1.1485 2.3378) 0.9922 (0.9811 1.0032)
NK/Macro 1.3929 (1.0139 1.8682) 1.0032 (0.9938 1.0121)
Dendr/Macro 1.0676 (0.6843 1.5620) 0.9976 (0.9872 1.0086)
Mast/Macro 1.3601 (0.9220 1.8937) 0.9996 (0.9899 1.0093)
Neutro/Macro 1.1689 (0.8237 1.6187) 0.9944 (0.9834 1.0055)
Eosin/Macro 1.4902 (1.0052 2.1052) 0.9969 (0.9874 1.0067)

Note that boot.Cly,ce and boot.Cl,ge denote the 95% bootstrap confidence intervals for race and age.

Log-contrast coefficients (Race) Log-contrast coefficients (Age)
T.CD8 $ p=003 T.CD8 H93, 0168
T.CD4 L84 p=o0017 T.CD4 LE2 4 p=0311

B 1287000 B ¥4 p=0.068

NK A3 b =0251 NK 05, o= 0087
Macro 85 b= 0006 Macro 02 o024
Dendr 2822, o105 Dendr 280 p-030s

Mast 8 p=03a4 Mast 1, b =0.406
Neutr P2 p=0226 Neutr B2 p=o67
Eosin 1y p=0.146 Eosin 88, p=0.355
T T T T T 1 T T T T 1
0.0 1.0 2.0 3.0 0.96 1.00 1.04
Multiplicative effect of race Multiplicative effect of age

Figure 4: Estimates of log-contrast coefficients (exponentiated) for each immune cell type, along with 95%
bootstrap confidence intervals and p-values. Race is coded as a dummy variable for African American.

tive effects, their bootstrap confidence intervals and p-values, for both race and age. Once again, for
age, all the coeflicients are close to 1 and none significantly different from 1, indicating no effect. For
race, four components are significant, two in a positive direction (i.e. multiplicative effects greater
than 1, T.cells.CD4 and B.cells) and two in a negative direction (T.cells.CD8 and Macrophage), coin-
ciding exactly with the results on the right of Figures 2 and 3. These individual coefficients for race
can be interpreted as follows: given any particular composition v of the nine cellular types for EA, the
corresponding composition for AA is the set of estimated coeflicients multiplied elementwise with v,
hence pushing some values upwards, others downwards. Since race and age have been included in the
regressions, the effects of age would also have to be applied if the hypothetical AA were different in
age, but this will have only small non-significant effects. The beauty of the log-contrast coefficients is
that exactly the same result would be obtained for any ALR transformation, any ILR transformation,
or the CLR transformation. The only difference between the transformations is then the estimated
coefficients in a table such as Table 2, where it is preferred to have simple and easily interpretable
responses.

An alternative way to conclude that age is not a significant predictor of the compositional response
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Table 3: MANOVA table for model using ALR transformed immune cells as multivariate responses

Pillai (df1, df2) approx.F p-value
Race(AA) 0.0866 (8,244) 2.8928 0.0043
Age 0.021 (8, 244) 0.6528 0.7327

Pillai is Pillai’s trace, approx.F is the approximation of Pillai’s trace on a F-statistic and (dfl, df2) are the degrees of
freedom of the approximated F-statistics.

Log-contrast coefficients (Race)

0.778
T.CD8 Fo 1 p=0.009
1.264
T.CD4 o— p=0015
1.314
B F—o— p=0.008
0.774
Macro Fo| p=0.004

I I I T T T 1
00 05 1.0 15 20 25 3.0

Multiplicative effect of race

Figure 5: Estimates of log-contrast coeflicients (exponentiated) for the four-part subcompositional repsonse
modelled on the discrete predictor race, with a dummy variable for the category African American, along with
95% bootstrap confidence intervals and p-values.

is to conduct the MANOVA test for the models. Table 3 shows the results for ALR model with Pillai’s
trace and approximated F-statistics with its degree of freedoms. Pillai’s trace value ranges from O to
1, which indicates that the explanatory variable has a significant effect on the multivariate response as
being closer to 1 (Pillai, 1955). The result in Table 3 shows that race is significant on immune cells
with Pillai’s trace of 0.0866 (p = 0.0043). On the other hand, age is not significant.

In regression analysis, to arrive at a final model, the nonsignificant predictor variable of age should
be omitted. Furthermore, in this case where the composition is the multivariate response, the non-
significant components of the response can also be eliminated, arriving at a parsimonious description
of the relationship. The logratio regressions were thus repeated including only four immune cell
types: T.cells.CDS, T.cells.CD4, B.cells and Macrophage, as a subcomposition. The results for the
log-contrast coefficients are given in Figure 5, showing estimates, 95% confidence intervals and p-
values. The results are more significant on each of the cell types, as might be expected in this reduced
model. Furthermore, the similarity of the multiplicatively increasing coefficients for T.cells.CD4 and
B.cells and those of the multiplicatively decreasing coefficients for T.cells.CD8 and Macrophage,
gives further credence for using the simple ratio (T.cells.CD4+B.cells)/(T.cells.CD8+Macrophage),
as already shown in Figure 3, deduced from the right hand biplot of Figure 2.

3.2. Dirichlet regression
Since the age covariate is insignificant, we only focus on a Dirichlet regression model with race.

Estimates of regression coefficients

Table 4 provides estimates of the S coeflicients, standard errors (s.e.) and p-values for testing Hy :
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Table 4: Dirichlet regression outputs with race as an independent variable

Cell type Estimate exp(estimate) s.e. p-value
T.CDS8 —-0.1946 0.8232 0.1098 0.0762
T.CD4 0.2127 1.2371 0.1032 0.0392

B 0.2051 1.2277 0.1175 0.0809
NK 0.0440 1.0450 0.1217 0.7180
Macro -0.2290 0.7953 0.0938 0.0147
Dendr -0.0924 09117 0.1345 0.4920
Mast 0.0371 1.0378 0.1158 0.7490
Neut -0.0377 0.9630 0.1353 0.7810
Eosin 0.0660 1.0682 0.1370 0.6300
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Figure 6: Componentwise plots of the local influence measures against compositional values based on the Dirich-
let model with the race variable.

B =0vs. H : B # 0. The coefficients for T.cells.CD4 and Macrophage are significant, which
means that AA has exp(0.2127) = 1.2371 times or exp(—0.2290) = 0.7953 times more T.cells.CD4
or Macrophage than EA. The signs of the coefficients are generally agreeing with those in Figure
4, where positive and negative coefficients correspond to multiplicative effects above and below 1,
respectively.

Figure 6 is a componentwise plot of the local influence measures against compositional values,
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Figure 7: Composite residual plot for Dirichlet regression model with race.

which were generated based on the fitted Dirichlet models with race as an independent variable.
We have already verified that race has no significant relevance with the immune cells in Table 4.
Overall, the local influence measures tend to increase rapidly for values near zero and then increase
more gradually as values increase. In spite of varying curvatures among cell types, which is small-
est for Macrophage, it is common that as values are getting close to zero, the impact of individual
observations on the estimation increases significantly. In Figure 6, we can also find two curves for
T.cells.CD8, T.cells.CD4, B.cells, NK.cells and Macrophage corresponding to racial groups, which
diverges. Specifically, AA has larger effects on estimates for Macrophage and T.cells.CD8 compared
to EA, whereas opposite directionalities are observed for T.cells.CD4, B.cells and NK.cells. On the
other hand, two curves are not visually separable for Dendritic.cells, Mast.cells, Neutrophils and
Eosinophils.

Figure 7 illustrates the composite residual plots of the Dirichlet model, which shows that there are
some observations with large composite residuals over 40 in both racial groups, but majority of the
composite residuals are spread below 20.

Figure 8 illustrates the componentwise plots of the overdispersion statistics of individual observa-
tions against compositional values, based on the Dirichlet models fitted with race. In these plots, the
red marked points indicate the observation with the largest overdispersion statistic value in each cell
type. Nonetheless, no significant overdispersion issue is detected in general.

4. Discussion

With improved understanding of interaction between the immune system and various diseases such
as cancer, the immunology field studying human immune system has gained significant attention.
Investigation of immune cellular composition and its association with diseases constitutes the core of
the immunologic studies. However, in spite of their importance, optimal statistical strategies for this
type of data still remain to be studied. In this paper, we reviewed statistical methods for compositional
data analysis and applied the methods to colorectal cancer immune cellular fractions data.

As illustrated throughout the manuscript, it is critical to consider unique aspects of compositional
data to implement efficient data analysis of immune cellular composition data and guarantee mean-
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Figure 8: Componentwise plots of the overdispersion statistic against compositional values based on the Dirichlet
model fitted with the race variable. The red marked points indicate the observation with the largest overdispersion
statistic value in each cell type.

ingful scientific insight. Ignoring this can result in misleading conclusions based on inappropriately
visualization and/or suboptimal selection of key variables ignoring inter-relationships among the el-
ements in compositional data. As solutions for these issues, we especially investigated the log-ratio
and Dirichlet regression models. Each approach has its own strengths. One of the key strengths of
the log-ratio approaches is the fact that existing and established statistical methods can be employed.
This allows utilization of a wide range of existing statistical models. The log-ratio approach involves
choosing one of the available log-ratio transformations, which in the present application serve as mul-
tivariate responses in a regression model. Fortunately, for this purpose the final results in the form
of log-contrast coefficients are invariant with respect to this choice, so we have used the simplest
option, ALR. This choice has the favourable property that the individual regressions can be more
easily interpreted. In contrast, the Dirichlet model handles compositional data more directly, with-
out transformation and with a simpler interpretation, but the analysis is no longer subcompositionally
coherent.

In the analysis of colorectal cancer immune cellular fractions data, we mainly focused on studying
associations of immune cellular fractions with race, since age was found to not affect the responses
significantly in both analyses. The log-ratio regression found that four cellular types were signifi-
cantly associated with the two racial groups, whereas the Dirichlet regression found only two of those



468 Jinkyung Yoo, Zequn Sun, Micheal Greenacre, Qin Ma, Dongjun Chung, Young Min Kim

four types to be significant.From the log-ratio regression we can conclude that T.cells.CD4, B.cells,
T.cells.CD8 and Macrophage can potentially be considered as key markers for racial difference, and
that the ratio of the sum of first two versus the sum of the last two can be used as a single summary of
the distinction between the two groups.

We hope that this paper provides a gentle but thorough guideline for the statistical analysis of
compositional data, especially those generated in immunology.

Data availability

The data we used in this paper is available as Table S2 of The Immune Landscape of Cancer paper
(Thorsson et al., 2018, Immunity, 48: 812-830; https://www.sciencedirect.com/science/
article/pii/S1074761318301213#app2). Corresponding clinical information is available in the
cBioPortal website (http://www.cbioportal.org/).
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