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Abstract
In the era of bigdata, scalability is a crucial issue in learning models. Among many others, the Alternating

Direction of Multipliers (ADMM, Boyd et al., 2011) algorithm has gained great popularity in solving large-scale
problems efficiently. In this article, we propose applying the ADMM algorithm to solve the least square problem
penalized by the pairwise-difference penalty, frequently used to identify group structures among coefficients.
ADMM algorithm enables us to solve the high-dimensional problem efficiently in a unified fashion and thus
allows us to employ several different types of penalty functions such as LASSO, Elastic Net, SCAD, and MCP
for the penalized problem. Additionally, the ADMM algorithm naturally extends the algorithm to distributed
computation and real-time updates, both desirable when dealing with large amounts of data.

Keywords: alternating direction of multipliers, grouping coefficients, real-time update, high-dimens-
ional data

1. Introduction

Grouping coefficients in regression problems is an important but challenging task in many contempo-
rary applications. In genomics, for example, grouping genes (i.e., variables) that play a similar role is
often of interest in order to have a more precise understanding of how genes affect the human body.

The coefficients grouping can be regarded as the generalization of sparsity (Ke et al., 2015). There
have been many studies for grouping coefficients through regularization. A canonical example is fused
LASSO (Tibshirani et al., 2005) that penalizes the difference between adjacent coefficients. The fused
LASSO requires the coefficients to be pre-ordered, but we may face many cases where we do not have
prior information about ordering. Bondell and Reich (2008) applied pairwise L∞ regulation, and Shen
and Huang (2010) proposed regularization to the difference of the pairwise coefficients for data-driven
grouping pursuit, both of which did not require the pre-ordering of the regression coefficients. Ke et al.
(2015) proposed the CARDS algorithm based on a hybrid version of fused LASSO penalty and total
variation penalty (Harchaoui and Leévy-Leduc, 2010) to detect homogeneous groups of regression
coefficients.

This article focuses on the pairwise-difference penalty proposed by Shen and Huang (2010). For
a given set of data y = (y1, y2, . . . , yn)T ∈ Rn and X = (x1, x2, . . . , xn) ∈ Rnxp, our goal is to solve

This work is partially funded by the National Research Foundation of Korea (NRF) grants 2018R1D1A1B07043034 and
2019R1A4A1028134.

1 Corresponding author: Department of Statistics, Korea University, 145 Anam-Ro, Sungbuk-Gu, Seoul 02841, Korea.
E-mail: sjshin@korea.ac.kr

Published 31 July 2022 / journal homepage: http://csam.or.kr
© 2022 The Korean Statistical Society, and Korean International Statistical Society. All rights reserved.



442 Soohee Park, Seung Jun Shin

the following problem with by the pairwise-difference penalty in order to to identify the grouping
structure of regression coefficients.

min
β

1
2
‖y − Xβ‖22 +

∑
i< j

pλ
(∣∣∣βi − β j

∣∣∣) , (1.1)

where β = (β1, β2, . . . ,βp)T and pλ(·) denotes a sparsity-pursing penalty function with a tuning pa-
rameter λ. There are various choices for the penalty function. We consider four popular penalties
including LASSO (Tibshirani, 1996), elastic net (Zou and Hastie, 2005), smoothly clipped absolute
deviance (SCAD) (Fan and Li, 2001), and minimax concave penalty (MCP) (Zhang, 2010).

We should point out that (1.1) does not require preordering because it penalizes all pairwise dis-
tances between coefficients. However, due to the larger number of penalty terms, its computation may
not always be straightforward. To tackle this, we propose to apply the Alternating Direction of Mul-
tipliers (ADMM) (Boyd et al., 2011) algorithm. The ADMM is an efficient algorithm, which can be
summarized as the intersection of optimizing the primal problem and the dual problem based on the
Lagrangian theory. In addition, the ADMM naturally allows us to extend to the distributed (or parallel)
computation desirable for handling large-scale data. The ADMM algorithm has been applied in a wide
variety of applications in penalized regressions. Wahlberg et al. (2012) proposed to solve the fused
lasso problem with the ADMM. Zhu (2017) applied the augmented ADMM to solve the generalized
lasso problems. Jeon et al. (2017) employed the ADMM to solve the grouping-coefficient-problem
for the generalized linear model with non-convex penalty functions.

The paper is organized as follows. Section 2 provides a brief overview of the ADMM algorithm.
In Section 3, we describe how the ADMM is applied to solve (1.1) with various penalty functions.
The extension to distributed computation and real-time update for (1.1) for large data sets is described
in Section 4. Section 5 illustrates the proposed algorithm to the simulated data and conclusions follow
in Section 6.

2. Alternating direction method of multipliers

Consider the following linearly constrained optimization problem with a variable x ∈ Rp, and two
convex functions f , g:

min
x

f (x) + g(x). (2.1)

Introducing an auxiliary variable z ∈ Rp, (2.1) can be expressed as follows:

p∗ = min
x,z

f (x) + g(z) subject to x = z. (2.2)

The primal problem and its Lagrangian function of (2.2) is

L(x, z, a) = f (x) + g(z) + aT (x − z), (2.3)

where a ∈ Rp denote Lagrangian multipliers. By Lagrangian theory (Boyd et al., 2004), the dual
problem of (2.1) is

d∗ = max
a

d(a),

where d(a) = infx,z L(x, z, a) is referred to as the dual function of (2.2). It can be readily known that
d∗ ≤ p∗. Under certain conditions, we have d∗ = p∗ (strong duality) under which one can use the dual
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problem to solve the primal problem (Boyd et al., 2004). The dual problem is often much simpler
than the primal problem since the dual function is always convex even if the primal function is not.
Support vector machine is a well-known example.

One natural way to solve the dual problem of (2.2) is the gradient ascent algorithm that iteratively
updates the primal function and the dual parameter based on the gradient. Yet, it is known to be
unstable (Boyd et al., 2011). As an alternative, the augmented Lagrangian introduces an additional L2
regularization term to stabilize the optimization as follows.

Lρ(x, z, a) = f (x) + g(z) + aT (x − z) +
ρ

2
‖x − z‖22, (2.4)

where ρ > 0 is a tuning parameter that controls the step size of the update based on the gradient. In
addition, we equivalently rewrite (2.4) as the following rescaled form.

Lρ(x, z,u) = f (x) + g(z) +
ρ

2
‖x − z + u‖22 −

ρ

2
‖u‖22, (2.5)

where u = a/ρ is the scaled dual variable.
Note that (2.5) is additively separable. The ADMM algorithm iteratively updates x, z,u in an

alternating way, which explains its name. Namely, the ADMM algorithm consists of the following
three steps of iterations:

xt+1 = arg min
x

f (x) +

(
ρ

2

) ∥∥∥x − zt + ut
∥∥∥2

2 , (2.6)

zt+1 = arg min
z

g(z) +

(
ρ

2

) ∥∥∥xt+1 − z + ut
∥∥∥2

2 , (2.7)

ut+1 = ut + ρ
(
xt+1 − zt+1

)
. (2.8)

We remark that both x and z can be efficiently updated using the proximal operator (Parikh and Boyd,
2014). The proximal operator of f (scaled by η) denoted with proxη f is defined by

proxη f (x) = arg min
v

[
f (v) +

1
2η
‖v − x‖22

]
,

where η > 0 is a scale parameter. That is, prox f (x) can be interpreted as a minimizer of f near x.
Employing the proximal operators we can respectively rewrite (2.6) and (2.7) as

xt+1 = prox f
ρ

(
zt − ut

)
and zt+1 = prox g

ρ

(
xt+1 − ut

)
.

This explains why ADMM is efficient when the complexity of prox f and proxg is much smaller than
that of prox f +g.

Finally, we remark the convergence conditions for the ADMM algorithm. Boyd et al. (2011)
showed that the ADMM algorithm converges under the following two assumptions:

A1. The functions f : Rp → R ∪ {+∞} and g : Rm → R ∪ {+∞} are closed, proper, convex.

A2. The unaugmented Lagrangian with ρ = 0 has a saddle point

The latter assumption A2 implies that the strong duality (Boyd et al., 2011).
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During the iterations, the ADMM yields two kinds of residuals: the primal residual and the dual
residual at iteration t + 1, which are respectively given by

rt+1 = xt+1 − zt+1 and st+1 = −ρ
(
zt+1 − zt

)
.

Both residuals converge to zero as the iterations proceed and thus the ADMM algorithm is terminated
if ‖rt+1‖22 and ‖st+1‖22 are sufficiently small, i.e., ‖rt+1‖22 < ε1 and ‖st+1‖ < ε2 for sufficiently small
values of ε1 and ε2. In this article, we set

ε1 =
√

nεabs + εrel max
{∥∥∥xk

∥∥∥
2,

∥∥∥zk
∥∥∥

2

}
and ε2 =

√
nεabs + εrel

∥∥∥uk
∥∥∥

2 (2.9)

with εabs = 10−4, εrel = 10−2 as suggested by Boyd et al., 2011.

3. Application of ADMM to the least square problem with the pairwise-difference
penalty

In what follows, we apply the ADMM algorithm to solve (1.1) with four popular penalty functions
including LASSO, elastic net, SCAD, and MCP. Toward this, (1.1) can be equivalently rewritten as
follows

min
β

1
2
‖y − Xβ‖22 +

∑
i< j

pλ
([
|Dβ|

]
i
)
, (3.1)

where D ∈ Rp(p−1)/2xp is a transformation matrix for the pairwise-difference such that Dβ = (β1 −

β2, β1 − β3, . . . , βp−1 − βp)T ∈ Rp(p−1)/2, and [v]i is the ith element of a vector v. To apply ADMM
algorithm, we introduce the auxiliary variable z ∈ Rp(p−1)/2 to write (3.1) as follows:

min
β,z

1
2
‖y − Xβ‖22 +

p(p−1)/2∑
i=1

pλ ([|z|]i) , subject to Dβ = z. (3.2)

The scaled version of augmented Lagrangian of (3.2) is given by

min
β,z

1
2
‖y − Xβ‖22 +

p(p−1)/2∑
i=1

pλ (|zi|) +
ρ

2
‖Dβ − z + u‖22 −

ρ

2
‖u‖22.

The corresponding ADMM updating equations for β, z, and u are

βt+1 = arg min
β

1
2
‖y − Xβ‖22 +

ρ

2

∥∥∥Dβ − zt + ut
∥∥∥2

2 , (3.3)

zt+1 = arg min
z

p(p−1)/2∑
i=1

pλ ([|z|]i) +
ρ

2

∥∥∥Dβt+1
− z + ut

∥∥∥2
2 , (3.4)

ut+1 = ut + Dβt+1
− zt+1. (3.5)

Since (3.5) is straightforward, it is crucial to solve (3.4) and (3.5). First, we note (3.3) for β is a
ridge-regression and has a closed-form solution as follows.

βt+1 = arg min
β

1
2
‖y − Xβ‖22 +

ρ

2

∥∥∥Dβ − zt + ut
∥∥∥2

2

=
(
XT X + ρDT D

)−1(
XT y + ρDT

(
zt − ut

) )
. (3.6)
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Next, (3.4) for z involves the penalty function pλ, and its solution differs according to the choice
of penalty functions.

LASSO. For the LASSO penalty, i.e., pλ(θ) = λθ for θ ≥ 0, (3.4) becomes

zt+1 = arg min
z

λ‖z‖1 +
ρ

2

∥∥∥Dβt+1
− z + ut

∥∥∥2
2

= S λ
ρ

(
Dβt+1 + ut

)
, (3.7)

where S λ/ρ(a) = {S λ/ρ(ai) = sign(ai)[ai − λ/ρ]+, i = 1, 2, . . . , dim(a)} denotes an element-wise soft-
thresholding operator.

Elastic Net. The elastic net penalty is defined as pλ(θ) = λ{αθ + (1 − α)/2θ2} for a given α ∈ [0, 1].
Now, (3.4) with the elastic net is

zt+1 = arg min
z

λ1‖z‖1 + λ2‖z‖22 +
ρ

2

∥∥∥Dβt+1
− z + ut

∥∥∥2
2

= S λ1
ρ

(
1

1 − 2λ2/ρ

(
Dβt+1 + ut

))
, (3.8)

where λ1 = αλ and λ2 = λ(1 − α)/2

SCAD. The SCAD penalty is defined through its derivative as

p′λ(θ) = λ

{
I(β ≤ λ) +

[aλ − θ]+

(a − 1)λ
I(θ > λ)

}
, θ ≥ 0 (3.9)

for a given a > 2. A popular choice of a is 3.7 (Fan and Li, 2001). The SCAD penalty is non-convex
and (3.4) with the SCAD penalty is not as simple as the previous two convex penalties. There are
several ways to solve the SCAD-penalized least square problem. In this article, we propose to apply
the local linear approximation (LLA) (Zou and Li, 2008). The LLA algorithm employs the first order
Taylor expansion to approximate the SCAD penalty as follows.

pλ(θ) ≈ pλ(θ0) + p′λ(θ0)(θ − θ0), for θ ≈ θ0. (3.10)

The LLA algorithm using (3.10) is known to be best convex approximation of the SCAD penalty
function, and one-step update is enough to have a sensible estimator (Zou and Li, 2008). Employing
(3.10) to approximate the SCAD penalty pλ(|zi|) at around |zi| ≈ |zt

i |, (3.4) with SCAD penalty can be
updated as follows.

zt+1 = arg min
z

p(p−1)/2∑
i=1

p′λ(|zt
i |)|zi| +

ρ

2

∥∥∥Dβt+1
− z + ut

∥∥∥2
2

= S wt
ρ

(
Dβt+1 + ut

)
, (3.11)

where [S wt/ρ(Dβt+1 + ut)]i = S wt
i/ρ

([Dβt+1]i + ut
i) with [wt]i = wt

i = p′λ(|zt
i |) for i = 1, 2, . . . , p(p−1)/2.
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MCP. MCP is another popular non-convex penalty and defined through the derivative as follows:

p′λ(θ) =

[
λ −

θ

a

]
I(0 ≤ θ ≤ aλ), θ ≥ 0 (3.12)

LLA algorithm for (3.4) with MCP yields an identical solution (3.11), but with a differently defined
wt

i = p′λ(|zt
i |) from (3.12).

We remark that (3.4) for updating z can be expressed as a proximal operator of the penalty function
P, where P(z) =

∑p(p−1)/2
i=1 P([|z|i]).

zt+1 = prox P
ρ

(
Dβt+1 + ut

)
.

Finally, Algorithm 1 provides a summary of the ADMMA algorithm to solve (1.1) with four popular
penalty functions.

Algorithm 1 ADMM for solving (1.1)

1: initialize
β0
← 0p, z0 ← 0p(p−1)/2, u0 ← 0p(p−1)/2

2: repeat
3: Update βt+1 from (3.6)
4: Update zt+1 from
5: – LASSO: (3.7)
6: – Elastic Net: (3.8)
7: – SCAD: (3.11) with wt

i based on (3.9).
8: – MCP: (3.11) with wt

i based on (3.12).
9: Update ut+1 from (3.5)

10: rt+1 = Dβt+1
− zt+1, st+1 = −ρDT (zt+1 − zt)

11: until ‖rt+1‖22 ≤ ε1, ‖st+1‖22 ≤ ε2 for sufficiently small ε1 and ε2 given, as suggested in (2.9).

3.1. Grouping Coefficients

It is well-known that the ADMM algorithm does not produce an exact zero for the penalized estimator
(Andrade et al., 2021). That is, β̂i − β̂ j is not exactly zero for all i < j in our setting, where β̂i

and β̂ j denote the solution obtained by the proposed ADMM algorithm. However, the estimated
auxiliary variable ẑ is sparse, and therefore one can perform a coefficient grouping based on the
sparsity structure of ẑ (Chi and Lange, 2015).

Figure 1 illustrates the grouping results based on the sparsity of ẑ, with the LASSO penalty as λ
varies, for the simulated data used in Section 5.1 (with n = 1000 and r = 1). The color indicates the
true class. As the λ increases, the effect of the grouping penalty increases, and the number of resulting
groups decreases. Note that the grouping result looks promising for a properly selected λ (= 2 in this
example).

4. Extensions to large-scale data

This section describes two additional advantages of the use of the ADMM algorithm: distributed
computation and real-time update, both of which are attractive features in the era of bigdata.
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Figure 1: Illustration of Coefficient-Grouping via (3.1) with the LASSO penalty for different values of λ.

4.1. Consensus ADMM for Distributed Computing

For the distributed computation, we consider the global consensus version of (3.1). Suppose the data
is divided into several, say K groups, i.e., y = (y1 : y2 : · · · : yK) and X = (X1 : X2 : · · · : XK). Then
the global consensus problem of (3.1) is

min
βk ,z

1
2

K∑
k=1

∥∥∥yk − Xkβk

∥∥∥2
2 +

p(p−1)/2∑
i=1

pλ ([|z|]i) (4.1)

subject to Dβk − z = 0 k = 1, . . . ,K

where βk ∈ Rp is the local parameters for (yk,Xk), k = 1, 2, . . . ,K and z is a common global variable.
The ADMM algorithm is a natural choice to solve the global consensus problem (4.1). We call

it consensus ADMM algorithm. The consensus ADMM for (4.1) consists of the following updating
equations.

βt+1
k = arg min

βk

∥∥∥yk − Xkβk

∥∥∥2
2 +

ρ

2

∥∥∥Dβk − zt + ut
k

∥∥∥2
2 , k = 1, . . . ,K, (4.2)

zt+1 = arg min
z

p(p−1)/2∑
i=1

pλ ([|z|]i) +
Kρ
2

∥∥∥∥Dβ̄t+1
− z + ūt

∥∥∥∥2

2
, (4.3)

ut+1
k = ut

k + Dβt+1
k − zt+1, k = 1, . . . ,K, (4.4)

where uk denotes the scaled dual variable corresponding to (yk,Xy), k = 1, 2, . . . ,K, and ū =
∑K

k=1 uk/K
and β̄ =

∑K
k=1 βk/K.

The consensus ADMM for (4.1) is a canonical example of the optimization problems with dis-
tributed objective and constraint terms across multiple processors or computers. Each processor only
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has to deal with its own constraint optimization problem which can be separately updated at each
iteration. However, the quadratic regularization term ‖Dβk − z + uk‖

2
2 forces the individual parameters

βk converging to a common value z, which is the solution of the global problem.
The primal and dual residuals in the consensus ADMM are respectively given by

rt+1 =
(
Dβt+1

1 − zt+1, . . . ,Dβt+1
K − zt+1

)
and st+1 = −ρ

(
zt+1 − zt, . . . , zt+1 − zt

)
,

and the algorithm is terminated if both ‖rt‖22 and ‖st‖22 are sufficiently small.

4.2. Real-time update for streamed data

Now, we assume stream data where we continuously collect data. For handling such stream data, it is
desired to update the solution without using all data previously accumulated. This is called real-time
update which becomes crucial technique to handle bigdata often collected in a continuous manner.

Suppose we have a set of old data DO = (yO,XO). Let β̂O, zO,uO denote the solution of (3.2) for
the old data denoted by DO. Now, we have a new set of data denoted by DN = (yN,XN). The goal of
real-time update is to compute the solution of (3.1) for the whole data, RW = DO ∪ DN without saving
DO whose sizes increases as more data accumulated.

We remark that ADMM algorithm naturally yields the real-time update for (3.1). This is because
the ADMM algorithm updates loss and penalty terms separately. Note that we only require data for
updating β, (3.3) which can be expressed as

βt+1 =
(
XT
WXW + ρDT D

)−1 (
XWT yW + ρDT

(
zt − ut

))
=

(
XT
OXO + XT

NXN + ρDT D
)−1 (

XT
O yO + XT

N yN + ρDT
(
zt − ut

))
.

We thus need to store XT
OXO and XT

O yO to update βt+1 for DW. We remark that the size of both XT
OXO

and XT
O yO depends only on p, not the sample size of DO. That is, the proposed algorithm is scalable.

5. Simulation

In this section, we conduct a simulation study to investigate the performance of the proposed method.

5.1. Estimation Performance

We first compare the performance of the different penalty function of the PD penalized problems.
First, we generate data from the linear regression model

yi = xT
i β + εi, i = 1, . . . , n,

where xi are generated from the mean-zero p-variate normal distribution with a first-order autore-
gressive structure, i.e. Corr(xi j, xik) = 0.5| j−k| (1 ≤ j, k ≤ p), and εi are from the standard nor-
mal distribution. We consider n = 200, 500, 1000 with p = 40. The true regression coefficients
β = (β1, . . . , β40) consist of four groups according to their size, each of size 10. We set (group 1)
β j = −2r for j = 1, 2, . . . , 10; (group 2) β j = −r for j = 11, 12, . . . , 20; β j = r for (group 3)
j = 21, 21, . . . , 30; and (group 4) β j = 2r for j = 31, 32, . . . , 40 where r controls the signal size.
We set r = 0.5, 1 for weak and strong signal cases, respectively. We select tuning parameter λ that
maximizes Bayesian information criterion (BIC).
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(a) r = 0.5

(b) r = 1

Figure 2: NMI and MSE values for selected models in experiments where n = 200 under independent 50 simu-
lations.

We measure the estimation performance of β̂ using mean squared error (MSE). For the grouping
performance, we use the normalized mutual information (NMI) (Ke et al., 2015) that measures the
distance between the estimated and true group structure (i.e., corresponding group labels). NMI is a
standardized measure taking a value between 0 and 1, and NMI = 1 indicates that the two grouping
results are identical. See Section 5 of Ke et al. (2015) for the details about NMI.

Figure 2 shows the comparison results when n = 200. The upper panels show the case when
r = 0.5 and the lower panels show the case when r = 1. The unpenalized OLS estimator does not
perform coefficient grouping while rest estimators with the pairwise difference penalty can identify
the true cluster of coefficients. One can observe that the two non-convex penalties, SCAD and MCP,
outperform all others in terms of coefficient grouping measured by NMI. The elastic net penalty
performs better than the LASSO in this simulation, which is not surprising since the predictors are
correlated. The unpenalized OLS is not bad in terms of estimation error, but the two non-convex
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Figure 3: Comparison of computing times between the original versus real-time ADMM algorithm. The range
of computing times over ten repetitions is represented by shaded areas.

penalties are still winners. Between the two, MCP seems slightly better than SCAD. The results for
larger sample sizes n = 500 and 1000 are nearly identical and hence omitted to avoid redundancy.

5.2. Real-time update

In what follows, we illustrate the computational efficiency of the real-time update. Toward this, the
data are generated in the same way as the previous simulation. To mimic the streamed-data scenario,
we assume that the data arrives in batches. We generate 100 batches with 10000 observations in
each batch. We then compare the computation times for the real-time ADMM introduced in Section
4.2 to the original ADMM algorithm applied to the whole data, DW. Figure 3 depicts the empirical
computing time averaged over ten repetitions for the two methods. As more data arrive, the original
algorithm takes longer to estimate parameters while the proposed real-time algorithm exhibits stable
computing times regardless of the total data size. What matters in the real-time algorithm is the batch
size, which is constant in this streamed-data setting. In conclusion, the computational efficiency of
the real-time ADMM becomes substantial as more data is accumulated.

6. Conclusion

To solve penalized regression problems with the pairwise-difference penalty for coefficient grouping,
we propose using the ADMM algorithm. The proposed ADMM algorithm not only makes optimiza-
tion much easier by updating parameters in an alternative way, but it is also general enough to handle
a wide range of penalty functions. Furthermore, it naturally leads to the extension of distributed
computing and real-time updates, both desirable for handling large amounts of data.
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Although we focus on the conventional regression problem with the squared loss problem in this
article, we can extend it to other popular problems such as generalized linear model and quantile
regression. The ADMM algorithm is still powerful as long as updating the regression coefficient
without penalty is simple.
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