Acknowledgement
The authors wish to thank Mr. Raffaele Pappalardo (CNRISPAAM) for the technical support.
References
- Warr A, Affara N, Aken B, et al. An improved pig reference genome sequence to enable pig genetics and genomics research. GigaScience 2020;9:giaa051. https://doi.org/10.1093/gigascience/giaa051
- Rosen BD, Bickhart DM, Schnabel RD, et al. De novo assembly of the cattle reference genome with single-molecule sequencing. GigaScience 2020;9:giaa021. https://doi.org/10.1093/gigascience/giaa021
- Low WY, Tearle R, Bickhart DM, et al. Chromosome-level assembly of the water buffalo genome surpasses human and goat genomes in sequence contiguity. Nat Commun 2019;10: 260. https://doi.org/10.1038/s41467-018-08260-0
- Archibald AL, Cockett NE, Dalrymple BP, et al. The sheep genome reference sequence: a work in progress. Anim Genet 2010;41:449-53. https://doi.org/10.1111/j.1365-2052.2010.02100.x
- Bickhart DM, Rosen BD, Koren S, et al. Single-molecule sequencing and chromatin conformation capture enable de novo reference assembly of the domestic goat genome. Nat Genet 2017;49:643-50. https://doi.org/10.1038/ng.3802
- Chowdhary BP, Raudsepp T. The horse genome. In: Volff JN, editor. Vertebrate Genomes. Genome Dynamics Basel, Switzerland: Karger; 2006. Vol 2 pp. 97-110. https://doi.org/10.1159/000095098
- Fitak RR, Mohandesan E, Corander J, Burger PA. The de novo genome assembly and annotation of a female domestic dromedary of North African origin. Mol Ecol Resour 2016; 16:314-24. https://doi.org/10.1111/1755-0998.12443
- Bianchi NO, Larramendy ML, Bianchi MS, Cortes L. Karyological conservatism in South American camelids. Experientia 1986;42:622-4. https://doi.org/10.1007/BF01955563
- Di Berardino D, Nicodemo D, Coppola G, et al. Cytogenetic characterization of alpaca (Lama pacos, fam. Camelidae) prometaphase chromosomes. Cytogenet Genome Res 2006; 115:138-44. https://doi.org/10.1159/000095234
- Frantz LAF, Bradley DG, Larson G, Orlando L. Animal domestication in the era of ancient genomics. Nat Rev Genet 2020;21:449-60. https://doi.org/10.1038/s41576-020-0225-0
- Fonseca PAS, Suarez-Vega A, Marras G, Canovas A. GALLO: An R package for genomic annotation and integration of multiple data sources in livestock for positional candidate loci. Gigascience 2020;9:giaa149. https://doi.org/10.1093/gigascience/giaa149
- Eusebi PG, Martinez A, Cortes O. Genomic tools for effective conservation of livestock breed diversity. Diversity 2020;12:8. https://doi.org/10.3390/d12010008
- Bai Y, Sartor M, Cavalcoli J. Current status and future perspectives for sequencing livestock genomes. J Anim Sci Biotechnol 2012;3:8. https://doi.org/10.1186/2049-1891-3-8
- Sanchez-Molano E, Kapsona VV, Ilska JJ, et al. Genetic analysis of novel phenotypes for farm animal resilience to weather variability. BMC Genet 2019;20:84. https://doi.org/10.1186/s12863-019-0787-z
- Liu R, Low WY, Tearle R, et al. New insights into mammalian sex chromosome structure and evolution using highquality sequences from bovine X and Y chromosomes. BMC Genomics 2019;20:1000. https://doi.org/10.1186/s12864-019-6364-z
- Dhanoa JK, Mukhopadhyay CS, Arora JS. Y-chromosomal genes affecting male fertility: a review. Vet World 2016;9: 783-91. https://doi.org/10.14202/vetworld.2016.783-791
- Raudsepp T, Chowdhary BP. The eutherian pseudoautosomal region. Cytogenet Genome Res 2015;147:81-94. https://doi.org/10.1159/000443157
- Skaletsky H, Kuroda-Kawaguchi T, Minx PJ, et al. The malespecific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature 2003;423:825-37. https://doi.org/10.1038/nature01722
- Rozen S, Skaletsky H, Marszalek JD, et al. Abundant gene conversion between arms of palindromes in human and ape Y chromosomes. Nature 2003;423:873-6. https://doi.org/10.1038/nature01723
- Trombetta B, D'Atanasio E, Cruciani F. Patterns of interchromosomal gene conversion on the male-specific region of the human Y Chromosome. Front Genet 2017;8:54. https://doi.org/10.3389/fgene.2017.00054
- Hughes JF, Skaletsky H, Brown LG, et al. Strict evolutionary conservation followed rapid gene loss on human and rhesus Y chromosomes. Nature 2012;483:82-6. https://doi.org/10.1038/nature10843
- Soh YQ, Alfoldi J, Pyntikova T, et al. Sequencing the mouse Y chromosome reveals convergent gene acquisition and amplification on both sex chromosomes. Cell 2014;159:800-13. https://doi.org/10.1016/j.cell.2014.09.052
- Skinner BM, Sargent CA, Churcher C, et al. The pig X and Y-chromosomes: structure, sequence, and evolution. Genome Res 2016;26:130-9. https://doi.org/10.1101/gr.188839.114
- Janecka JE, Davis BW, Ghosh S, et al. Horse Y chromosome assembly displays unique evolutionary features and putative stallion fertility genes. Nat Commun 2018;9:2945. https://doi.org/10.1038/s41467-018-05290-6
- De Lorenzi L, Parma P. Identification of some errors in the genome assembly of bovidae by FISH. Cytogenet Genome Res 2020;160:85-93. https://doi.org/10.1159/000506221
- O'Connor RE, Fonseka G, Frodsham R, et al. Isolation of subtelomeric sequences of porcine chromosomes for translocation screening reveals errors in the pig genome assembly. Anim Genet 2017;48:395-403. Erratum in: Anim Genet 2017;48:628. https://doi.org/10.1111/age.12548
- O'Connor C. Fluorescence in situ hybridization (FISH). Nature Education 2008;1:171.
- Bubendorf L, Jurgen Grote H, Syrjanen K. CHAPTER 36 - Molecular techniques. In: Bibbo M, Wilbur D, editors. Comprehensive cytopathology (Third Edition). W.B. Saunders; 2008. pp. 1071-90. https://doi.org/10.1016/B978-141604208-2.10036-3
- Deakin JE, Potter S, O'Neill R, et al. Chromosomics: bridging the gap between genomes and chromosomes. Genes (Basel) 2019;10:627. https://doi.org/10.3390/genes10080627
- O'Connor SJM, Turner KR, Barrans SL. Practical application of fluorescent in situ hybridization techniques in clinical diagnostic laboratories. In: Nielsen BS, Jones J, editors. In situ hybridization protocols. Methods in molecular biology. New York, NY, USA: Humana; 2020. vol 2148. pp. 35-70. https://doi.org/10.1007/978-1-0716-0623-0_3
- Levsky JM, Singer RH. Fluorescence in situ hybridization: past, present and future. J Cell Sci 2003;116(Pt 14):2833-8. https://doi.org/10.1242/jcs.00633
- Rubes J, Musilova P, Kopecna O, Kubickova S, Cernohorska H, Kulemsina AI. Comparative molecular cytogenetics in cetartiodactyla. Cytogenet Genome Res 2012;137:194-207. https://doi.org/10.1159/000338932
- Graphodatsky AS, Trifonov VA, Stanyon R. The genome diversity and karyotype evolution of mammals. Mol Cytogenet 2011;4:22. https://doi.org/10.1186/1755-8166-4-22
- Toder R, Glaser B, Schiebel K, et al. Genes located in and near the human pseudoautosomal region are located in the X-Y pairing region in dog and sheep. Chromosome Res 1997; 5:301-6. https://doi.org/10.1023/B:CHRO.0000038760.84605.0d
- Yeh CC, Taylor JF, Gallagher DS, Sanders JO, Turner JW, Davis SK. Genetic and physical mapping of the bovine X chromosome. Genomics 1996;32:245-52. https://doi.org/10.1006/geno.1996.0111
- lannuzzi L. Standard karyotype of the river buffalo (Bubalus bubalis L., 2n = 50). Report of the committee for the standardization of banded karyotypes of the river buffalo. Cytogenet Cell Genet 1994;67:102-13. https://doi.org/10.1159/000133808
- Cribiu EP, Di Berardino D, Di Meo GP, et al. International system for chromosome nomenclature of domestic bovids (ISCNDB 2000). Cytogenet Cell Genet 2001;92:283-99. https://doi.org/10.1159/000056917
- Gallagher DS, Womack JE. Chromosome conservation in the bovidae. J Hered 1992;83:287-98. https://doi.org/10.1093/oxfordjournals.jhered.a111215
- Das PJ, Chowdhary BP, Raudsepp T. Characterization of the bovine pseudoautosomal region and comparison with sheep, goat, and other mammalian pseudoautosomal regions. Cytogenet Genome Res 2009;126:139-47. https://doi.org/10.1159/000245913
- Perret J, Shia YC, Fries R, Vassart G, Georges M. A polymorphic satellite sequence maps to the pericentric region of the bovine Y chromosome. Genomics 1990;6:482-90. https://doi.org/10.1016/0888-7543(90)90478-d
- Thomsen PD, Jorgensen CB. Distribution of two conserved, male-enriched repeat families on the Bos taurus Y chromosome. Mamm Genome 1994;5:171-3. https://doi.org/10.1007/BF00352350
- Vogel T, Borgmann S, Dechend F, Hecht W, Schmidtke J. Conserved Y-chromosomal location of TSPY in Bovidae. Chromosome Res 1997;5:182-5. https://doi.org/10.1023/A:1018494914182
- Goldammer T, Brunner RM, Schwerin M. Comparative analysis of Y chromosome structure in Bos taurus and B. indicus by FISH using region-specific, microdissected, and locus-specific DNA probes. Cytogenet Cell Genet 1997;77: 238-41. https://doi.org/10.1159/000134584
- Weikard R, Kuhn C, Brunner RM, et al. Sex determination in cattle based on simultaneous amplification of a new malespecific DNA sequence and an autosomal locus using the same primers. Mol Reprod Dev 2001;60:13-9. https://doi.org/10.1002/mrd.1056
- Di Meo GP, Perucatti A, Floriot S. et al. Chromosome evolution and improved cytogenetic maps of the Y chromosome in cattle, zebu, river buffalo, sheep and goat. Chromosome Res 2005;13:349-55. https://doi.org/10.1007/s10577-005-2688-4
- Habermann F, Winter A, Olsaker I, Reichert P, Fries R. Validation of sperm sexing in the cattle (Bos taurus) by dual colour fluorescence in situ hybridization. J Anim Breed Genet 2005;122(Suppl 1):22-7. https://doi.org/10.1111/j.1439-0388.2005.00488.x
- Hamilton CK, Favetta LA, Di Meo GP, et al. Copy number variation of testis-specific protein, Y-encoded (TSPY) in 14 different breeds of cattle (Bos taurus). Sex Dev 2009;3:205-13. https://doi.org/10.1159/000228721
- Hamilton CK, Revay T, Domander R, Favetta LA, King WA. A large expansion of the HSFY gene family in cattle shows dispersion across Yq and testis-specific expression. PLoS One 2011;6:e17790. https://doi.org/10.1371/journal.pone.0017790
- Prakash B, Olsaker I, Gustavsson I, Chowdhary BP. FISH mapping of three bovine cosmids to cattle, goat, sheep and buffalo X chromosomes. Hereditas 1997;126:115-9. https://doi.org/10.1111/j.1601-5223.1997.00115.x
- Piumi F, Schibler L, Vaiman D, Oustry A, Cribiu EP. Comparative cytogenetic mapping reveals chromosome rearrangements between the X chromosomes of two closely related mammalian species (cattle and goats). Cytogenet Cell Genet 1998;81:36-41. https://doi.org/10.1159/000015004
- Iannuzzi L, Di Meo GP, Perucatti A, Incarnato D, Schibler L, Cribiu EP. Comparative FISH mapping of bovid X chromosomes reveals homologies and divergences between the subfamilies bovinae and caprinae. Cytogenet Cell Genet 2000;89:171-6. https://doi.org/10.1159/000015607
- Perucatti A, Genualdo V, Iannuzzi A, et al. Advanced comparative cytogenetic analysis of X chromosomes in river buffalo, cattle, sheep, and human. Chromosome Res 2012; 20:413-25. https://doi.org/10.1007/s10577-012-9285-0
- De Lorenzi L, Genualdo V, Perucatti A, Iannuzzi A, Iannuzzi L, Parma P. Physical mapping of 20 unmapped fragments of the btau_4.0 genome assembly in cattle, sheep and river buffalo. Cytogenet Genome Res 2013;140:29-35. https://doi.org/10.1159/000350869
- Quilter CR, Blott SC, Mileham AJ, Affara NA, Sargent CA, Griffin DK. A mapping and evolutionary study of porcine sex chromosome genes. Mamm Genome 2002;13:588-94. https://doi.org/10.1007/s00335-002-3026-1
- Das PJ, Mishra DK, Ghosh S, et al. Comparative organization and gene expression profiles of the porcine pseudoautosomal region. Cytogenet Genome Res 2013;141:26-36. https://doi.org/10.1159/000351310
- Skinner BM, Lachani K, Sargent CA, Affara NA. Regions of XY homology in the pig X chromosome and the boundary of the pseudoautosomal region. BMC Genet 2013;14:3. https://doi.org/10.1186/1471-2156-14-3
- Cornefert-Jensen F, Hare WC, Abt DA. Identification of the sex chromosomes of the domestic pig. J Hered 1968;59:251-5. https://doi.org/10.1093/oxfordjournals.jhered.a107710
- Grunwald D, Geffrotin C, Chardon P, Frelat G, Vaiman M. Swine chromosomes: flow sorting and spot blot hybridization. Cytometry 1986;7:582-8. https://doi.org/10.1002/cyto.990070613
- Chowdhary BP, Paria N, Raudsepp T. Potential applications of equine genomics in dissecting diseases and fertility. Anim Reprod Sci 2008;107:208-18. https://doi.org/10.1016/j.anireprosci.2008.04.010
- Raudsepp T, Santani A, Wallner B, et al. A detailed physical map of the horse Y chromosome. Proc Natl Acad Sci USA 2004;101:9321-6. https://doi.org/10.1073/pnas.0403011101
- Paria N. Discovery of candidate genes for stallion fertility from the horse Y chromosome [Doctoral Dissertation]. College Station, TX, USA: Texas A&M University; 2009.
- Paria N, Raudsepp T, Pearks Wilkerson AJ, et al. A gene catalogue of the euchromatic male-specific region of the horse Y chromosome: comparison with human and other mammals. PLoS One 2011;6:e21374. https://doi.org/10.1371/journal.pone.0021374
- Raudsepp T, Chowdhary BP. The horse pseudoautosomal region (PAR):characterization and comparison with the human, chimp and mouse PARs. Cytogenet Genome Res 2008;121:102-9. https://doi.org/10.1159/000125835
- Raudsepp T, Das PJ, Avila F, Chowdhary BP. The pseudoautosomal region and sex chromosome aneuploidies in domestic species. Sex Dev 2012;6:72-83. https://doi.org/10.1159/000330627
- Raudsepp T, Gustafson-Seabury A, Durkin K, et al. A 4,103 marker integrated physical and comparative map of the horse genome. Cytogenet Genome Res 2008;122:28-36. https://doi.org/10.1159/000151313
- Chowdhary BP, Raudsepp T. The horse genome derby: racing from map to whole genome sequence. Chromosome Res 2008;16:109-27. https://doi.org/10.1007/s10577-008-1204-z
- Salva B, Zumalacarregui J, Figueira AC, Osorio MT, Mateo J. Nutrient composition and technological quality of meat from alpacas reared in Peru. Meat Sci 2009;82:450-5. https://doi.org/10.1016/j.meatsci.2009.02.015
- Popova T, Tejedab L, Penarrieta JM, Smith MA, Bush RD, Hopkins DL. Meat of South American camelids - Sensory quality and nutritional composition. Meat Sci 2021;171: 108285. https://doi.org/10.1016/j.meatsci.2020.108285
- Pauciullo A, Shuiep ET, Ogah MD, Cosenza G, Di Stasio L, Erhardt G. Casein gene cluster in camelids: comparative genome analysis and new findings on haplotype variability and physical mapping. Front Genet 2019;10:748. https://doi.org/10.3389/fgene.2019.00748
- Morante R, Goyache F, Burgos A, Cervantes I, Perez-Cabal MA, Gutierrez JP. Genetic improvement for alpaca fibre production in the Peruvian Altiplano: the Pacomarca experience. Anim Genet Res Inf 2009;45:37-43. https://doi.org/10.1017/S1014233909990307
- Cruz A, Morante R, Gutierrez JP, Torres R, Burgos A, Cervantes I. Genetic parameters for medullated fiber and its relationship with other productive traits in alpacas. Animal 2019;13:1358-64. https://doi.org/10.1017/S1751731118003282
- Mendoza MN, Raudsepp T, More MJ, Gutierrez GA, Ponce de Leon FA. Cytogenetic mapping of 35 new markers in the alpaca (Vicugna pacos). Genes (Basel). 2020;11:522. https://doi.org/10.3390/genes11050522
- Richardson MF, Munyard K, Croft LJ, et al. ChromosomeLevel alpaca reference genome VicPac3.1 Improves genomic insight into the biology of new world camelids. Front Genet 2019;10:586. https://doi.org/10.3389/fgene.2019.00586
- Avila F, Baily MP, Perelman P, et al. A comprehensive wholegenome integrated cytogenetic map for the alpaca (Lama pacos). Cytogenet Genome Res 2014;144:193-207. https://doi.org/10.1159/000370329
- Jevit MJ, Davis BW, Castaneda C, et al. An 8.22 Mb assembly and annotation of the alpaca (Vicugna pacos) Y chromosome. Genes (Basel) 2021;12:105. https://doi.org/10.3390/genes12010105
- Avila F, Das PJ, Kutzler M, et al. Development and application of camelid molecular cytogenetic tools. J Hered 2014;105: 952-63. https://doi.org/10.1093/jhered/ess067
- Yue XP, Chang TC, DeJarnette JM, Marshall CE, Lei CZ, Liu WS. Copy number variation of PRAMEY across breeds and its association with male fertility in Holstein sires. J Dairy Sci 2013;96:8024-34. https://doi.org/10.3168/jds.2013-7037
- Yue XP, Dechow C, Chang TC, et al. Copy number variations of the extensively amplified Y-linked genes, HSFY and ZNF 280BY, in cattle and their association with male reproductive traits in Holstein bulls. BMC Genomics 2014;15:113. https://doi.org/10.1186/1471-2164-15-113
- Pacheco HA, Rezende FM, Penagaricano F. Gene mapping and genomic prediction of bull fertility using sex chromosome markers. J Dairy Sci 2020;103:3304-11. https://doi.org/10.3168/jds.2019-17767
- Vogel T, Dechend F, Manz E, et al. Organization and expression of bovine TSPY. Mamm Genome 1997;8:491. https://doi.org/10.1007/s003359900482
- Wang M, Sun Z, Ding F, et al. Efficient TALEN-mediated gene knockin at the bovine Y chromosome and generation of a sex-reversal bovine. Cell Mol Life Sci 2021;78:5415-25. https://doi.org/10.1007/s00018-021-03855-1
- Xi J, Wang X, Zhang Y, et al. Sex control by Zfy siRNA in the dairy cattle. Anim Reprod Sci 2019;200:1-6. https://doi.org/10.1016/j.anireprosci.2018.05.015
- Suriaty R, Mohd Hafiz AR, Halimaton Sa'adiah T, Mohd Hafizal A. Detection of y chromosome of bovine Using testis specific protein and Amelogenin genes. Malaysian J Vet Res 2016;7:47-51.
- Sanchez JM, Gomez-Redondo I, Browne JA, Planells B, Gutierrez-Adan A, Lonergan P. MicroRNAs in amniotic fluid and maternal blood plasma associated with sex determination and early gonad differentiation in cattle. Biol Reprod 2021;105:345-58. https://doi.org/10.1093/biolre/ioab079
- Rhoads A, Au KF. PacBio sequencing and its applications. Genomics Proteomics Bioinformatics 2015;13:278-89. https://doi.org/10.1016/j.gpb.2015.08.002
- Pauciullo A, Fleck K, Luhken G, Di Berardino D, Erhardt G. Dual-color high-resolution fiber-FISH analysis on lethal white syndrome carriers in sheep. Cytogenet Genome Res 2013;140:46-54. https://doi.org/10.1159/000350786
- Ye CJ, Heng HH. High resolution fiber-fluorescence in situ hybridization. In: Wan T, editor. Cancer cytogenetics. Methods in molecular biology. New York, NY, USA: Humana Press; 2017. v.1541. pp. 151-66. https://doi.org/10.1007/978-1-4939-6703-2_14
- Lindgren G. Genome mapping in the horse [Dissertation]. Uppsala, Sweden: Acta Universitatis Upsaliensis; 2001.
- Wade CM, Giulotto E, Sigurdsson S, et al. Genome sequence, comparative analysis, and population genetics of the domestic horse. Science 2009;326:865-7. https://doi.org/10.1126/science.1178158
- Tomaszkiewicz M, Medvedev P, Makova KD. Y and W Chromosome assemblies: approaches and discoveries. Trends Genet 2017;33:266-82. https://doi.org/10.1016/j.tig.2017.01.008
- Chen N, Bellott DW, Page DC, Clark AG. Identification of avian W-linked contigs by short-read sequencing. BMC Genomics 2012;13:183. https://doi.org/10.1186/1471-2164-13-183
- Galtier N. Recombination, GC-content and the human pseudoautosomal boundary paradox. Trends Genet 2004;20: 347-9. https://doi.org/10.1016/j.tig.2004.06.001
- Katsura Y, Iwase M, Satta Y. Evolution of genomic structures on mammalian sex chromosomes. Curr Genomics 2012;13: 115-23. https://doi.org/10.2174/138920212799860625
- Kutch IC, Fedorka KM. Y-chromosomes can constrain adaptive evolution via epistatic interactions with other chromosomes. BMC Evol Biol 2018;18:204. https://doi.org/10.1186/s12862-018-1327-6
- Bellott DW, Hughes JF, Skaletsky H, et al. Mammalian Y chromosomes retain widely expressed dosage-sensitive regulators. Nature 2014;508:494-9. https://doi.org/10.1038/nature13206
- Jiang PP, Hartl DL, Lemos B. Y not a dead end: epistatic interactions between Y-linked regulatory polymorphisms and genetic background affect global gene expression in Drosophila melanogaster. Genetics 2010;186:109-18. https://doi.org/10.1534/genetics.110.118109
- Lemos B, Araripe LO, Hartl DL. Polymorphic Y chromosomes harbor cryptic variation with manifold functional consequences. Science 2008;319:91-3. https://doi.org/10.1126/science.1148861
- Ohno S. Sex chromosomes and sex-linked genes. Berlin, Heidelberg, Germany: NY, USA: Springer-Verlag; 1967.
- Schenkel MA, Beukeboom LW, Pen I. Epistatic interactions between sex chromosomes and autosomes can affect the stability of sex determination systems. J Evol Biol 2021;34: 1666-77. https://doi.org/10.1111/jeb.13939
- Yang H, Fries R, Stranzinger G. The sex-determining region Y (SRY) gene is mapped to p12-p13 of the Y chromosome in pig (Sus scrofa domestica) by in situ hybridization. Anim Genet 1993;24:297-300. https://doi.org/10.1111/j.1365-2052.1993.tb00315.x