DOI QR코드

DOI QR Code

State of the art on the physical mapping of the Y-chromosome in the Bovidae and comparison with other species - A review

  • Rossetti, Cristina (Laboratory of Animal Cytogenetics and Genomics, National Research Council (CNR), ISPAAM) ;
  • Genualdo, Viviana (Laboratory of Animal Cytogenetics and Genomics, National Research Council (CNR), ISPAAM) ;
  • Incarnato, Domenico (Laboratory of Animal Cytogenetics and Genomics, National Research Council (CNR), ISPAAM) ;
  • Mottola, Filomena (Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli") ;
  • Perucatti, Angela (Laboratory of Animal Cytogenetics and Genomics, National Research Council (CNR), ISPAAM) ;
  • Pauciullo, Alfredo (Department of Agricultural, Forest and Food Sciences, University of Turin)
  • Received : 2021.10.22
  • Accepted : 2022.02.01
  • Published : 2022.09.01

Abstract

The next generation sequencing has significantly contributed to clarify the genome structure of many species of zootechnical interest. However, to date, some portions of the genome, especially those linked to a heterogametic nature such as the Y chromosome, are difficult to assemble and many gaps are still present. It is well known that the fluorescence in situ hybridization (FISH) is an excellent tool for identifying genes unequivocably mapped on chromosomes. Therefore, FISH can contribute to the localization of unplaced genome sequences, as well as to correct assembly errors generated by comparative bioinformatics. To this end, it is necessary to have starting points; therefore, in this study, we reviewed the physically mapped genes on the Y chromosome of cattle, buffalo, sheep, goats, pigs, horses and alpacas. A total of 208 loci were currently mapped by FISH. 89 were located in the male-specific region of the Y chromosome (MSY) and 119 were identified in the pseudoautosomal region (PAR). The loci reported in MSY and PAR were respectively: 18 and 25 in Bos taurus, 5 and 7 in Bubalus bubalis, 5 and 24 in Ovis aries, 5 and 19 in Capra hircus, 10 and 16 in Sus scrofa, 46 and 18 in Equus caballus. While in Vicugna pacos only 10 loci are reported in the PAR region. The correct knowledge and assembly of all genome sequences, including those of genes mapped on the Y chromosome, will help to elucidate their biological processes, as well as to discover and exploit potentially epistasis effects useful for selection breeding programs.

Keywords

Acknowledgement

The authors wish to thank Mr. Raffaele Pappalardo (CNRISPAAM) for the technical support.

References

  1. Warr A, Affara N, Aken B, et al. An improved pig reference genome sequence to enable pig genetics and genomics research. GigaScience 2020;9:giaa051. https://doi.org/10.1093/gigascience/giaa051
  2. Rosen BD, Bickhart DM, Schnabel RD, et al. De novo assembly of the cattle reference genome with single-molecule sequencing. GigaScience 2020;9:giaa021. https://doi.org/10.1093/gigascience/giaa021
  3. Low WY, Tearle R, Bickhart DM, et al. Chromosome-level assembly of the water buffalo genome surpasses human and goat genomes in sequence contiguity. Nat Commun 2019;10: 260. https://doi.org/10.1038/s41467-018-08260-0
  4. Archibald AL, Cockett NE, Dalrymple BP, et al. The sheep genome reference sequence: a work in progress. Anim Genet 2010;41:449-53. https://doi.org/10.1111/j.1365-2052.2010.02100.x
  5. Bickhart DM, Rosen BD, Koren S, et al. Single-molecule sequencing and chromatin conformation capture enable de novo reference assembly of the domestic goat genome. Nat Genet 2017;49:643-50. https://doi.org/10.1038/ng.3802
  6. Chowdhary BP, Raudsepp T. The horse genome. In: Volff JN, editor. Vertebrate Genomes. Genome Dynamics Basel, Switzerland: Karger; 2006. Vol 2 pp. 97-110. https://doi.org/10.1159/000095098
  7. Fitak RR, Mohandesan E, Corander J, Burger PA. The de novo genome assembly and annotation of a female domestic dromedary of North African origin. Mol Ecol Resour 2016; 16:314-24. https://doi.org/10.1111/1755-0998.12443
  8. Bianchi NO, Larramendy ML, Bianchi MS, Cortes L. Karyological conservatism in South American camelids. Experientia 1986;42:622-4. https://doi.org/10.1007/BF01955563
  9. Di Berardino D, Nicodemo D, Coppola G, et al. Cytogenetic characterization of alpaca (Lama pacos, fam. Camelidae) prometaphase chromosomes. Cytogenet Genome Res 2006; 115:138-44. https://doi.org/10.1159/000095234
  10. Frantz LAF, Bradley DG, Larson G, Orlando L. Animal domestication in the era of ancient genomics. Nat Rev Genet 2020;21:449-60. https://doi.org/10.1038/s41576-020-0225-0
  11. Fonseca PAS, Suarez-Vega A, Marras G, Canovas A. GALLO: An R package for genomic annotation and integration of multiple data sources in livestock for positional candidate loci. Gigascience 2020;9:giaa149. https://doi.org/10.1093/gigascience/giaa149
  12. Eusebi PG, Martinez A, Cortes O. Genomic tools for effective conservation of livestock breed diversity. Diversity 2020;12:8. https://doi.org/10.3390/d12010008
  13. Bai Y, Sartor M, Cavalcoli J. Current status and future perspectives for sequencing livestock genomes. J Anim Sci Biotechnol 2012;3:8. https://doi.org/10.1186/2049-1891-3-8
  14. Sanchez-Molano E, Kapsona VV, Ilska JJ, et al. Genetic analysis of novel phenotypes for farm animal resilience to weather variability. BMC Genet 2019;20:84. https://doi.org/10.1186/s12863-019-0787-z
  15. Liu R, Low WY, Tearle R, et al. New insights into mammalian sex chromosome structure and evolution using highquality sequences from bovine X and Y chromosomes. BMC Genomics 2019;20:1000. https://doi.org/10.1186/s12864-019-6364-z
  16. Dhanoa JK, Mukhopadhyay CS, Arora JS. Y-chromosomal genes affecting male fertility: a review. Vet World 2016;9: 783-91. https://doi.org/10.14202/vetworld.2016.783-791
  17. Raudsepp T, Chowdhary BP. The eutherian pseudoautosomal region. Cytogenet Genome Res 2015;147:81-94. https://doi.org/10.1159/000443157
  18. Skaletsky H, Kuroda-Kawaguchi T, Minx PJ, et al. The malespecific region of the human Y chromosome is a mosaic of discrete sequence classes. Nature 2003;423:825-37. https://doi.org/10.1038/nature01722
  19. Rozen S, Skaletsky H, Marszalek JD, et al. Abundant gene conversion between arms of palindromes in human and ape Y chromosomes. Nature 2003;423:873-6. https://doi.org/10.1038/nature01723
  20. Trombetta B, D'Atanasio E, Cruciani F. Patterns of interchromosomal gene conversion on the male-specific region of the human Y Chromosome. Front Genet 2017;8:54. https://doi.org/10.3389/fgene.2017.00054
  21. Hughes JF, Skaletsky H, Brown LG, et al. Strict evolutionary conservation followed rapid gene loss on human and rhesus Y chromosomes. Nature 2012;483:82-6. https://doi.org/10.1038/nature10843
  22. Soh YQ, Alfoldi J, Pyntikova T, et al. Sequencing the mouse Y chromosome reveals convergent gene acquisition and amplification on both sex chromosomes. Cell 2014;159:800-13. https://doi.org/10.1016/j.cell.2014.09.052
  23. Skinner BM, Sargent CA, Churcher C, et al. The pig X and Y-chromosomes: structure, sequence, and evolution. Genome Res 2016;26:130-9. https://doi.org/10.1101/gr.188839.114
  24. Janecka JE, Davis BW, Ghosh S, et al. Horse Y chromosome assembly displays unique evolutionary features and putative stallion fertility genes. Nat Commun 2018;9:2945. https://doi.org/10.1038/s41467-018-05290-6
  25. De Lorenzi L, Parma P. Identification of some errors in the genome assembly of bovidae by FISH. Cytogenet Genome Res 2020;160:85-93. https://doi.org/10.1159/000506221
  26. O'Connor RE, Fonseka G, Frodsham R, et al. Isolation of subtelomeric sequences of porcine chromosomes for translocation screening reveals errors in the pig genome assembly. Anim Genet 2017;48:395-403. Erratum in: Anim Genet 2017;48:628. https://doi.org/10.1111/age.12548
  27. O'Connor C. Fluorescence in situ hybridization (FISH). Nature Education 2008;1:171.
  28. Bubendorf L, Jurgen Grote H, Syrjanen K. CHAPTER 36 - Molecular techniques. In: Bibbo M, Wilbur D, editors. Comprehensive cytopathology (Third Edition). W.B. Saunders; 2008. pp. 1071-90. https://doi.org/10.1016/B978-141604208-2.10036-3
  29. Deakin JE, Potter S, O'Neill R, et al. Chromosomics: bridging the gap between genomes and chromosomes. Genes (Basel) 2019;10:627. https://doi.org/10.3390/genes10080627
  30. O'Connor SJM, Turner KR, Barrans SL. Practical application of fluorescent in situ hybridization techniques in clinical diagnostic laboratories. In: Nielsen BS, Jones J, editors. In situ hybridization protocols. Methods in molecular biology. New York, NY, USA: Humana; 2020. vol 2148. pp. 35-70. https://doi.org/10.1007/978-1-0716-0623-0_3
  31. Levsky JM, Singer RH. Fluorescence in situ hybridization: past, present and future. J Cell Sci 2003;116(Pt 14):2833-8. https://doi.org/10.1242/jcs.00633
  32. Rubes J, Musilova P, Kopecna O, Kubickova S, Cernohorska H, Kulemsina AI. Comparative molecular cytogenetics in cetartiodactyla. Cytogenet Genome Res 2012;137:194-207. https://doi.org/10.1159/000338932
  33. Graphodatsky AS, Trifonov VA, Stanyon R. The genome diversity and karyotype evolution of mammals. Mol Cytogenet 2011;4:22. https://doi.org/10.1186/1755-8166-4-22
  34. Toder R, Glaser B, Schiebel K, et al. Genes located in and near the human pseudoautosomal region are located in the X-Y pairing region in dog and sheep. Chromosome Res 1997; 5:301-6. https://doi.org/10.1023/B:CHRO.0000038760.84605.0d
  35. Yeh CC, Taylor JF, Gallagher DS, Sanders JO, Turner JW, Davis SK. Genetic and physical mapping of the bovine X chromosome. Genomics 1996;32:245-52. https://doi.org/10.1006/geno.1996.0111
  36. lannuzzi L. Standard karyotype of the river buffalo (Bubalus bubalis L., 2n = 50). Report of the committee for the standardization of banded karyotypes of the river buffalo. Cytogenet Cell Genet 1994;67:102-13. https://doi.org/10.1159/000133808
  37. Cribiu EP, Di Berardino D, Di Meo GP, et al. International system for chromosome nomenclature of domestic bovids (ISCNDB 2000). Cytogenet Cell Genet 2001;92:283-99. https://doi.org/10.1159/000056917
  38. Gallagher DS, Womack JE. Chromosome conservation in the bovidae. J Hered 1992;83:287-98. https://doi.org/10.1093/oxfordjournals.jhered.a111215
  39. Das PJ, Chowdhary BP, Raudsepp T. Characterization of the bovine pseudoautosomal region and comparison with sheep, goat, and other mammalian pseudoautosomal regions. Cytogenet Genome Res 2009;126:139-47. https://doi.org/10.1159/000245913
  40. Perret J, Shia YC, Fries R, Vassart G, Georges M. A polymorphic satellite sequence maps to the pericentric region of the bovine Y chromosome. Genomics 1990;6:482-90. https://doi.org/10.1016/0888-7543(90)90478-d
  41. Thomsen PD, Jorgensen CB. Distribution of two conserved, male-enriched repeat families on the Bos taurus Y chromosome. Mamm Genome 1994;5:171-3. https://doi.org/10.1007/BF00352350
  42. Vogel T, Borgmann S, Dechend F, Hecht W, Schmidtke J. Conserved Y-chromosomal location of TSPY in Bovidae. Chromosome Res 1997;5:182-5. https://doi.org/10.1023/A:1018494914182
  43. Goldammer T, Brunner RM, Schwerin M. Comparative analysis of Y chromosome structure in Bos taurus and B. indicus by FISH using region-specific, microdissected, and locus-specific DNA probes. Cytogenet Cell Genet 1997;77: 238-41. https://doi.org/10.1159/000134584
  44. Weikard R, Kuhn C, Brunner RM, et al. Sex determination in cattle based on simultaneous amplification of a new malespecific DNA sequence and an autosomal locus using the same primers. Mol Reprod Dev 2001;60:13-9. https://doi.org/10.1002/mrd.1056
  45. Di Meo GP, Perucatti A, Floriot S. et al. Chromosome evolution and improved cytogenetic maps of the Y chromosome in cattle, zebu, river buffalo, sheep and goat. Chromosome Res 2005;13:349-55. https://doi.org/10.1007/s10577-005-2688-4
  46. Habermann F, Winter A, Olsaker I, Reichert P, Fries R. Validation of sperm sexing in the cattle (Bos taurus) by dual colour fluorescence in situ hybridization. J Anim Breed Genet 2005;122(Suppl 1):22-7. https://doi.org/10.1111/j.1439-0388.2005.00488.x
  47. Hamilton CK, Favetta LA, Di Meo GP, et al. Copy number variation of testis-specific protein, Y-encoded (TSPY) in 14 different breeds of cattle (Bos taurus). Sex Dev 2009;3:205-13. https://doi.org/10.1159/000228721
  48. Hamilton CK, Revay T, Domander R, Favetta LA, King WA. A large expansion of the HSFY gene family in cattle shows dispersion across Yq and testis-specific expression. PLoS One 2011;6:e17790. https://doi.org/10.1371/journal.pone.0017790
  49. Prakash B, Olsaker I, Gustavsson I, Chowdhary BP. FISH mapping of three bovine cosmids to cattle, goat, sheep and buffalo X chromosomes. Hereditas 1997;126:115-9. https://doi.org/10.1111/j.1601-5223.1997.00115.x
  50. Piumi F, Schibler L, Vaiman D, Oustry A, Cribiu EP. Comparative cytogenetic mapping reveals chromosome rearrangements between the X chromosomes of two closely related mammalian species (cattle and goats). Cytogenet Cell Genet 1998;81:36-41. https://doi.org/10.1159/000015004
  51. Iannuzzi L, Di Meo GP, Perucatti A, Incarnato D, Schibler L, Cribiu EP. Comparative FISH mapping of bovid X chromosomes reveals homologies and divergences between the subfamilies bovinae and caprinae. Cytogenet Cell Genet 2000;89:171-6. https://doi.org/10.1159/000015607
  52. Perucatti A, Genualdo V, Iannuzzi A, et al. Advanced comparative cytogenetic analysis of X chromosomes in river buffalo, cattle, sheep, and human. Chromosome Res 2012; 20:413-25. https://doi.org/10.1007/s10577-012-9285-0
  53. De Lorenzi L, Genualdo V, Perucatti A, Iannuzzi A, Iannuzzi L, Parma P. Physical mapping of 20 unmapped fragments of the btau_4.0 genome assembly in cattle, sheep and river buffalo. Cytogenet Genome Res 2013;140:29-35. https://doi.org/10.1159/000350869
  54. Quilter CR, Blott SC, Mileham AJ, Affara NA, Sargent CA, Griffin DK. A mapping and evolutionary study of porcine sex chromosome genes. Mamm Genome 2002;13:588-94. https://doi.org/10.1007/s00335-002-3026-1
  55. Das PJ, Mishra DK, Ghosh S, et al. Comparative organization and gene expression profiles of the porcine pseudoautosomal region. Cytogenet Genome Res 2013;141:26-36. https://doi.org/10.1159/000351310
  56. Skinner BM, Lachani K, Sargent CA, Affara NA. Regions of XY homology in the pig X chromosome and the boundary of the pseudoautosomal region. BMC Genet 2013;14:3. https://doi.org/10.1186/1471-2156-14-3
  57. Cornefert-Jensen F, Hare WC, Abt DA. Identification of the sex chromosomes of the domestic pig. J Hered 1968;59:251-5. https://doi.org/10.1093/oxfordjournals.jhered.a107710
  58. Grunwald D, Geffrotin C, Chardon P, Frelat G, Vaiman M. Swine chromosomes: flow sorting and spot blot hybridization. Cytometry 1986;7:582-8. https://doi.org/10.1002/cyto.990070613
  59. Chowdhary BP, Paria N, Raudsepp T. Potential applications of equine genomics in dissecting diseases and fertility. Anim Reprod Sci 2008;107:208-18. https://doi.org/10.1016/j.anireprosci.2008.04.010
  60. Raudsepp T, Santani A, Wallner B, et al. A detailed physical map of the horse Y chromosome. Proc Natl Acad Sci USA 2004;101:9321-6. https://doi.org/10.1073/pnas.0403011101
  61. Paria N. Discovery of candidate genes for stallion fertility from the horse Y chromosome [Doctoral Dissertation]. College Station, TX, USA: Texas A&M University; 2009.
  62. Paria N, Raudsepp T, Pearks Wilkerson AJ, et al. A gene catalogue of the euchromatic male-specific region of the horse Y chromosome: comparison with human and other mammals. PLoS One 2011;6:e21374. https://doi.org/10.1371/journal.pone.0021374
  63. Raudsepp T, Chowdhary BP. The horse pseudoautosomal region (PAR):characterization and comparison with the human, chimp and mouse PARs. Cytogenet Genome Res 2008;121:102-9. https://doi.org/10.1159/000125835
  64. Raudsepp T, Das PJ, Avila F, Chowdhary BP. The pseudoautosomal region and sex chromosome aneuploidies in domestic species. Sex Dev 2012;6:72-83. https://doi.org/10.1159/000330627
  65. Raudsepp T, Gustafson-Seabury A, Durkin K, et al. A 4,103 marker integrated physical and comparative map of the horse genome. Cytogenet Genome Res 2008;122:28-36. https://doi.org/10.1159/000151313
  66. Chowdhary BP, Raudsepp T. The horse genome derby: racing from map to whole genome sequence. Chromosome Res 2008;16:109-27. https://doi.org/10.1007/s10577-008-1204-z
  67. Salva B, Zumalacarregui J, Figueira AC, Osorio MT, Mateo J. Nutrient composition and technological quality of meat from alpacas reared in Peru. Meat Sci 2009;82:450-5. https://doi.org/10.1016/j.meatsci.2009.02.015
  68. Popova T, Tejedab L, Penarrieta JM, Smith MA, Bush RD, Hopkins DL. Meat of South American camelids - Sensory quality and nutritional composition. Meat Sci 2021;171: 108285. https://doi.org/10.1016/j.meatsci.2020.108285
  69. Pauciullo A, Shuiep ET, Ogah MD, Cosenza G, Di Stasio L, Erhardt G. Casein gene cluster in camelids: comparative genome analysis and new findings on haplotype variability and physical mapping. Front Genet 2019;10:748. https://doi.org/10.3389/fgene.2019.00748
  70. Morante R, Goyache F, Burgos A, Cervantes I, Perez-Cabal MA, Gutierrez JP. Genetic improvement for alpaca fibre production in the Peruvian Altiplano: the Pacomarca experience. Anim Genet Res Inf 2009;45:37-43. https://doi.org/10.1017/S1014233909990307
  71. Cruz A, Morante R, Gutierrez JP, Torres R, Burgos A, Cervantes I. Genetic parameters for medullated fiber and its relationship with other productive traits in alpacas. Animal 2019;13:1358-64. https://doi.org/10.1017/S1751731118003282
  72. Mendoza MN, Raudsepp T, More MJ, Gutierrez GA, Ponce de Leon FA. Cytogenetic mapping of 35 new markers in the alpaca (Vicugna pacos). Genes (Basel). 2020;11:522. https://doi.org/10.3390/genes11050522
  73. Richardson MF, Munyard K, Croft LJ, et al. ChromosomeLevel alpaca reference genome VicPac3.1 Improves genomic insight into the biology of new world camelids. Front Genet 2019;10:586. https://doi.org/10.3389/fgene.2019.00586
  74. Avila F, Baily MP, Perelman P, et al. A comprehensive wholegenome integrated cytogenetic map for the alpaca (Lama pacos). Cytogenet Genome Res 2014;144:193-207. https://doi.org/10.1159/000370329
  75. Jevit MJ, Davis BW, Castaneda C, et al. An 8.22 Mb assembly and annotation of the alpaca (Vicugna pacos) Y chromosome. Genes (Basel) 2021;12:105. https://doi.org/10.3390/genes12010105
  76. Avila F, Das PJ, Kutzler M, et al. Development and application of camelid molecular cytogenetic tools. J Hered 2014;105: 952-63. https://doi.org/10.1093/jhered/ess067
  77. Yue XP, Chang TC, DeJarnette JM, Marshall CE, Lei CZ, Liu WS. Copy number variation of PRAMEY across breeds and its association with male fertility in Holstein sires. J Dairy Sci 2013;96:8024-34. https://doi.org/10.3168/jds.2013-7037
  78. Yue XP, Dechow C, Chang TC, et al. Copy number variations of the extensively amplified Y-linked genes, HSFY and ZNF 280BY, in cattle and their association with male reproductive traits in Holstein bulls. BMC Genomics 2014;15:113. https://doi.org/10.1186/1471-2164-15-113
  79. Pacheco HA, Rezende FM, Penagaricano F. Gene mapping and genomic prediction of bull fertility using sex chromosome markers. J Dairy Sci 2020;103:3304-11. https://doi.org/10.3168/jds.2019-17767
  80. Vogel T, Dechend F, Manz E, et al. Organization and expression of bovine TSPY. Mamm Genome 1997;8:491. https://doi.org/10.1007/s003359900482
  81. Wang M, Sun Z, Ding F, et al. Efficient TALEN-mediated gene knockin at the bovine Y chromosome and generation of a sex-reversal bovine. Cell Mol Life Sci 2021;78:5415-25. https://doi.org/10.1007/s00018-021-03855-1
  82. Xi J, Wang X, Zhang Y, et al. Sex control by Zfy siRNA in the dairy cattle. Anim Reprod Sci 2019;200:1-6. https://doi.org/10.1016/j.anireprosci.2018.05.015
  83. Suriaty R, Mohd Hafiz AR, Halimaton Sa'adiah T, Mohd Hafizal A. Detection of y chromosome of bovine Using testis specific protein and Amelogenin genes. Malaysian J Vet Res 2016;7:47-51.
  84. Sanchez JM, Gomez-Redondo I, Browne JA, Planells B, Gutierrez-Adan A, Lonergan P. MicroRNAs in amniotic fluid and maternal blood plasma associated with sex determination and early gonad differentiation in cattle. Biol Reprod 2021;105:345-58. https://doi.org/10.1093/biolre/ioab079
  85. Rhoads A, Au KF. PacBio sequencing and its applications. Genomics Proteomics Bioinformatics 2015;13:278-89. https://doi.org/10.1016/j.gpb.2015.08.002
  86. Pauciullo A, Fleck K, Luhken G, Di Berardino D, Erhardt G. Dual-color high-resolution fiber-FISH analysis on lethal white syndrome carriers in sheep. Cytogenet Genome Res 2013;140:46-54. https://doi.org/10.1159/000350786
  87. Ye CJ, Heng HH. High resolution fiber-fluorescence in situ hybridization. In: Wan T, editor. Cancer cytogenetics. Methods in molecular biology. New York, NY, USA: Humana Press; 2017. v.1541. pp. 151-66. https://doi.org/10.1007/978-1-4939-6703-2_14
  88. Lindgren G. Genome mapping in the horse [Dissertation]. Uppsala, Sweden: Acta Universitatis Upsaliensis; 2001.
  89. Wade CM, Giulotto E, Sigurdsson S, et al. Genome sequence, comparative analysis, and population genetics of the domestic horse. Science 2009;326:865-7. https://doi.org/10.1126/science.1178158
  90. Tomaszkiewicz M, Medvedev P, Makova KD. Y and W Chromosome assemblies: approaches and discoveries. Trends Genet 2017;33:266-82. https://doi.org/10.1016/j.tig.2017.01.008
  91. Chen N, Bellott DW, Page DC, Clark AG. Identification of avian W-linked contigs by short-read sequencing. BMC Genomics 2012;13:183. https://doi.org/10.1186/1471-2164-13-183
  92. Galtier N. Recombination, GC-content and the human pseudoautosomal boundary paradox. Trends Genet 2004;20: 347-9. https://doi.org/10.1016/j.tig.2004.06.001
  93. Katsura Y, Iwase M, Satta Y. Evolution of genomic structures on mammalian sex chromosomes. Curr Genomics 2012;13: 115-23. https://doi.org/10.2174/138920212799860625
  94. Kutch IC, Fedorka KM. Y-chromosomes can constrain adaptive evolution via epistatic interactions with other chromosomes. BMC Evol Biol 2018;18:204. https://doi.org/10.1186/s12862-018-1327-6
  95. Bellott DW, Hughes JF, Skaletsky H, et al. Mammalian Y chromosomes retain widely expressed dosage-sensitive regulators. Nature 2014;508:494-9. https://doi.org/10.1038/nature13206
  96. Jiang PP, Hartl DL, Lemos B. Y not a dead end: epistatic interactions between Y-linked regulatory polymorphisms and genetic background affect global gene expression in Drosophila melanogaster. Genetics 2010;186:109-18. https://doi.org/10.1534/genetics.110.118109
  97. Lemos B, Araripe LO, Hartl DL. Polymorphic Y chromosomes harbor cryptic variation with manifold functional consequences. Science 2008;319:91-3. https://doi.org/10.1126/science.1148861
  98. Ohno S. Sex chromosomes and sex-linked genes. Berlin, Heidelberg, Germany: NY, USA: Springer-Verlag; 1967.
  99. Schenkel MA, Beukeboom LW, Pen I. Epistatic interactions between sex chromosomes and autosomes can affect the stability of sex determination systems. J Evol Biol 2021;34: 1666-77. https://doi.org/10.1111/jeb.13939
  100. Yang H, Fries R, Stranzinger G. The sex-determining region Y (SRY) gene is mapped to p12-p13 of the Y chromosome in pig (Sus scrofa domestica) by in situ hybridization. Anim Genet 1993;24:297-300. https://doi.org/10.1111/j.1365-2052.1993.tb00315.x