DOI QR코드

DOI QR Code

Leaky Gut in IBD: Intestinal Barrier-Gut Microbiota Interaction

  • Yu, Shunying (Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University) ;
  • Sun, Yibin (Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University) ;
  • Shao, Xinyu (Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University) ;
  • Zhou, Yuqing (Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University) ;
  • Yu, Yang (Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University) ;
  • Kuai, Xiaoyi (Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University) ;
  • Zhou, Chunli (Department of Gastroenterology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University)
  • 투고 : 2022.03.14
  • 심사 : 2022.06.28
  • 발행 : 2022.07.28

초록

Inflammatory bowel disease (IBD) is a global disease that is in increasing incidence. The gut, which contains the largest amount of lymphoid tissue in the human body, as well as a wide range of nervous system components, is integral in ensuring intestinal homeostasis and function. By interacting with gut microbiota, immune cells, and the enteric nervous system, the intestinal barrier, which is a solid barrier, protects the intestinal tract from the external environment, thereby maintaining homeostasis throughout the body. Destruction of the intestinal barrier is referred to as developing a "leaky gut," which causes a series of changes relating to the occurrence of IBD. Changes in the interactions between the intestinal barrier and gut microbiota are particularly crucial in the development of IBD. Exploring the leaky gut and its interaction with the gut microbiota, immune cells, and the neuroimmune system may help further explain the pathogenesis of IBD and provide potential therapeutic methods for future use.

키워드

과제정보

The study was supported by the Suzhou Special Project of Diagnosis and Treatment for key Clinical Disease (LCZX201814) and Suzhou Association of Integrated Traditional and Western Medicine (SYSD2018208).

참고문헌

  1. Kaplan GG, Ng SC. 2017. Understanding and preventing the global increase of inflammatory bowel disease. Gastroenterology 152: 313-321.e312. https://doi.org/10.1053/j.gastro.2016.10.020
  2. Ananthakrishnan AN. 2015. Epidemiology and risk factors for IBD. Nat. Rev. Gastroenterol. Hepatol. 12: 205-217. https://doi.org/10.1038/nrgastro.2015.34
  3. 2020. The global, regional, and national burden of inflammatory bowel disease in 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 5: 17-30.
  4. Yu LC. 2018. Microbiota dysbiosis and barrier dysfunction in inflammatory bowel disease and colorectal cancers: exploring a common ground hypothesis. J. Biomed. Sci. 25: 79.
  5. Parikh K, Antanaviciute A, Fawkner-Corbett D, Jagielowicz M, Aulicino A, Lagerholm C, et al. 2019. Colonic epithelial cell diversity in health and inflammatory bowel disease. Nature 567: 49-55. https://doi.org/10.1038/s41586-019-0992-y
  6. Camilleri M, Lasch K, Zhou W. 2012. Irritable bowel syndrome: methods, mechanisms, and pathophysiology. The confluence of increased permeability, inflammation, and pain in irritable bowel syndrome. Am. J. Physiol. Gastrointest. Liver Physiol. 303: G775-785. https://doi.org/10.1152/ajpgi.00155.2012
  7. Vetrano S, Ploplis VA, Sala E, Sandoval-Cooper M, Donahue DL, Correale C, et al. 2011. Unexpected role of anticoagulant protein C in controlling epithelial barrier integrity and intestinal inflammation. Proc. Nat. Acad. Sci. USA 108: 19830-19835. https://doi.org/10.1073/pnas.1107140108
  8. Arumugam M, Raes J, Pelletier E, Le Paslier D, Yamada T, Mende DR, et al. 2011. Enterotypes of the human gut microbiome. Nature 473: 174-180. https://doi.org/10.1038/nature09944
  9. Lynch SV, Pedersen O. 2016. The human intestinal microbiome in health and disease. New Eng. J. Med. 375: 2369-2379. https://doi.org/10.1056/NEJMra1600266
  10. Imhann F, Vich Vila A, Bonder MJ, Fu J, Gevers D, Visschedijk MC, et al. 2018. Interplay of host genetics and gut microbiota underlying the onset and clinical presentation of inflammatory bowel disease. Gut 67: 108-119. https://doi.org/10.1136/gutjnl-2016-312135
  11. Kolho KL, Korpela K, Jaakkola T, Pichai MV, Zoetendal EG, Salonen A, et al. 2015. Fecal microbiota in pediatric inflammatory bowel disease and its relation to inflammation. Am. J. Gastroenterol. 110: 921-930. https://doi.org/10.1038/ajg.2015.149
  12. Chen L, Wang W, Zhou R, Ng SC, Li J, Huang M, et al. 2014. Characteristics of fecal and mucosa-associated microbiota in Chinese patients with inflammatory bowel disease. Medicine 93: e51.
  13. Zhou Y, Chen H, He H, Du Y, Hu J, Li Y, et al. 2016. Increased Enterococcus faecalis infection is associated with clinically active Crohn disease. Medicine 95: e5019.
  14. Prosberg M, Bendtsen F, Vind I, Petersen AM, Gluud LL. 2016. The association between the gut microbiota and the inflammatory bowel disease activity: a systematic review and meta-analysis. Scandinavian J. Gastroenterology 51: 1407-1415. https://doi.org/10.1080/00365521.2016.1216587
  15. Maukonen J, Kolho KL, Paasela M, Honkanen J, Klemetti P, Vaarala O, et al. 2015. Altered fecal microbiota in paediatric inflammatory bowel disease. J. Crohn's Colitis 9: 1088-1095. https://doi.org/10.1093/ecco-jcc/jjv147
  16. Johansson ME, Sjovall H, Hansson GC. 2013. The gastrointestinal mucus system in health and disease. Nat. Rev. Gastroenterol. Hepatol. 10: 352-361. https://doi.org/10.1038/nrgastro.2013.35
  17. Johansson ME, Gustafsson JK, Holmen-Larsson J, Jabbar KS, Xia L, Xu H, et al. 2014. Bacteria penetrate the normally impenetrable inner colon mucus layer in both murine colitis models and patients with ulcerative colitis. Gut 63: 281-291. https://doi.org/10.1136/gutjnl-2012-303207
  18. Swidsinski A, Weber J, Loening-Baucke V, Hale LP, Lochs H. 2005. Spatial organization and composition of the mucosal flora in patients with inflammatory bowel disease. J. Clin. Microbiol. 43: 3380-3389. https://doi.org/10.1128/JCM.43.7.3380-3389.2005
  19. Motta JP, Allain T, Green-Harrison LE, Groves RA, Feener T, Ramay H, et al. 2018. Iron sequestration in microbiota biofilms as a novel strategy for treating inflammatory bowel disease. Inflamm. Bowel Dis. 24: 1493-1502. https://doi.org/10.1093/ibd/izy116
  20. Carlsson AH, Yakymenko O, Olivier I, Hakansson F, Postma E, Keita AV, et al. 2013. Faecalibacterium prausnitzii supernatant improves intestinal barrier function in mice DSS colitis. Scand. J. Gastroenterol. 48: 1136-1144.
  21. Mohebali N, Ekat K, Kreikemeyer B, Breitruck A. 2020. Barrier protection and recovery effects of gut commensal bacteria on differentiated intestinal epithelial cells in vitro. Nutrients 12: 2251.
  22. Laval L, Martin R, Natividad JN, Chain F, Miquel S, Desclee de Maredsous C, et al. 2015. Lactobacillus rhamnosus CNCM I-3690 and the commensal bacterium Faecalibacterium prausnitzii A2-165 exhibit similar protective effects to induced barrier hyperpermeability in mice. Gut Microbes. 6: 1-9. https://doi.org/10.4161/19490976.2014.990784
  23. Geerlings SY, Kostopoulos I, de Vos WM, Belzer C. 2018. Akkermansia muciniphila in the human gastrointestinal tract: When, where, and how? Microorganisms 6: 75.
  24. Bian X, Wu W, Yang L, Lv L, Wang Q, Li Y, et al. 2019. Administration of Akkermansia muciniphila ameliorates dextran sulfate sodium-induced ulcerative colitis in mice. Front. Microbiol. 10: 2259.
  25. Wang L, Tang L, Feng Y, Zhao S, Han M, Zhang C, et al. 2020. A purified membrane protein from Akkermansia muciniphila or the pasteurised bacterium blunts colitis associated tumourigenesis by modulation of CD8(+) T cells in mice. Gut 69: 1988-1997. https://doi.org/10.1136/gutjnl-2019-320105
  26. Qian K, Chen S, Wang J, Sheng K, Wang Y, Zhang M. 2022. A β-N-acetylhexosaminidase Amuc_2109 from Akkermansia muciniphila protects against dextran sulfate sodium-induced colitis in mice by enhancing intestinal barrier and modulating gut microbiota. Food Funct. 13: 2216-2227. https://doi.org/10.1039/D1FO04094D
  27. Shin J, Noh JR, Chang DH, Kim YH, Kim MH, Lee ES, et al. 2019. Elucidation of Akkermansia muciniphila probiotic traits driven by mucin depletion. Front. Microbiol. 10: 1137.
  28. van der Lugt B, van Beek AA, Aalvink S, Meijer B, Sovran B, Vermeij WP, et al. 2019. Akkermansia muciniphila ameliorates the agerelated decline in colonic mucus thickness and attenuates immune activation in accelerated aging Ercc1-/Δ7 mice. Immun. Ageing 16: 6.
  29. Plovier H, Everard A, Druart C, Depommier C, Van Hul M, Geurts L, et al. 2017. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat. Med. 23: 107-113. https://doi.org/10.1038/nm.4236
  30. Panpetch W, Hiengrach P, Nilgate S, Tumwasorn S, Somboonna N, Wilantho A, et al. 2020. Additional Candida albicans administration enhances the severity of dextran sulfate solution induced colitis mouse model through leaky gut-enhanced systemic inflammation and gut-dysbiosis but attenuated by Lactobacillus rhamnosus L34. Gut Microbes 11: 465-480. https://doi.org/10.1080/19490976.2019.1662712
  31. White R, Atherly T, Guard B, Rossi G, Wang C, Mosher C, et al. 2017. Randomized, controlled trial evaluating the effect of multistrain probiotic on the mucosal microbiota in canine idiopathic inflammatory bowel disease. Gut Microbes 8: 451-466. https://doi.org/10.1080/19490976.2017.1334754
  32. Fan H, Du J, Liu X, Zheng WW, Zhuang ZH, Wang CD, et al. 2019. Effects of pentasa-combined probiotics on the microflora structure and prognosis of patients with inflammatory bowel disease. Turk. J. Gastroenterol. 30: 680-685. https://doi.org/10.5152/tjg.2019.18426
  33. Yilmaz I, Dolar ME, Ozpinar H. 2019. Effect of administering kefir on the changes in fecal microbiota and symptoms of inflammatory bowel disease: A randomized controlled trial. Turk. J. Gastroenterol. 30: 242-253. https://doi.org/10.5152/tjg.2018.18227
  34. Ballini A, Santacroce L, Cantore S, Bottalico L, Dipalma G, Topi S, et al. 2019. Probiotics efficacy on oxidative stress values in inflammatory bowel disease: A randomized double-blinded placebo-controlled pilot study. Endocr. Metab. Immune Disord. Drug Targets 19: 373-381. https://doi.org/10.2174/1871530319666181221150352
  35. Fan L, Qi Y, Qu S, Chen X, Li A, Hendi M, et al. 2021. B. adolescentis ameliorates chronic colitis by regulating Treg/Th2 response and gut microbiota remodeling. Gut Microbes 13: 1-17.
  36. Ambort D, Johansson ME, Gustafsson JK, Ermund A, Hansson GC. 2012. Perspectives on mucus properties and formation-- lessons from the biochemical world. Cold Spring Harb. Perspect. Med. 2: a014159.
  37. Bergstrom K, Fu J, Johansson ME, Liu X, Gao N, Wu Q, et al. 2017. Core 1- and 3-derived O-glycans collectively maintain the colonic mucus barrier and protect against spontaneous colitis in mice. Mucosal Immunol. 10: 91-103. https://doi.org/10.1038/mi.2016.45
  38. Kudelka MR, Hinrichs BH, Darby T, Moreno CS, Nishio H, Cutler CE, et al. 2016. Cosmc is an X-linked inflammatory bowel disease risk gene that spatially regulates gut microbiota and contributes to sex-specific risk. Proc. Nat. Acad. Sci. USA 113: 14787-14792. https://doi.org/10.1073/pnas.1612158114
  39. Moran AP, Gupta A, Joshi L. 2011. Sweet-talk: role of host glycosylation in bacterial pathogenesis of the gastrointestinal tract. Gut 60: 1412-1425. https://doi.org/10.1136/gut.2010.212704
  40. Larsson JM, Karlsson H, Crespo JG, Johansson ME, Eklund L, Sjovall H, et al. 2011. Altered O-glycosylation profile of MUC2 mucin occurs in active ulcerative colitis and is associated with increased inflammation. Inflamm. Bowel Dis. 17: 2299-2307. https://doi.org/10.1002/ibd.21625
  41. Bergstrom KS, Xia L. 2013. Mucin-type O-glycans and their roles in intestinal homeostasis. Glycobiology 23: 1026-1037. https://doi.org/10.1093/glycob/cwt045
  42. Wells JM, Brummer RJ, Derrien M, MacDonald TT, Troost F, Cani PD, et al. 2017. Homeostasis of the gut barrier and potential biomarkers. Am. J. Physiol. Gastrointest. Liver Physiol. 312: G171-G193. https://doi.org/10.1152/ajpgi.00048.2015
  43. Quigley EM. 2016. Leaky gut - concept or clinical entity? Curr. Opin. Gastroenterol. 32: 74-79. https://doi.org/10.1097/MOG.0000000000000243
  44. Bergstrom JH, Birchenough GM, Katona G, Schroeder BO, Schutte A, Ermund A, et al. 2016. Gram-positive bacteria are held at a distance in the colon mucus by the lectin-like protein ZG16. Proc. Nat. Acad. Sci. USA 113: 13833-13838. https://doi.org/10.1073/pnas.1611400113
  45. Desai MS, Seekatz AM, Koropatkin NM, Kamada N, Hickey CA, Wolter M, et al. 2016. A dietary fiber-deprived gut microbiota degrades the colonic mucus barrier and enhances pathogen susceptibility. Cell 167: 1339-1353.e1321. https://doi.org/10.1016/j.cell.2016.10.043
  46. Okumura R, Takeda K. 2018. Maintenance of intestinal homeostasis by mucosal barriers. Inflamm. Regen. 38: 5.
  47. Liso M, De Santis S, Verna G, Dicarlo M, Calasso M, Santino A, et al. 2020. A Specific mutation in Muc2 determines early dysbiosis in colitis-prone winnie mice. Inflamm. Bowel Dise. 26: 546-556. https://doi.org/10.1093/ibd/izz279
  48. Dharmani P, Srivastava V, Kissoon-Singh V, Chadee K. 2009. Role of intestinal mucins in innate host defense mechanisms against pathogens. J. Innate Immun. 1: 123-135. https://doi.org/10.1159/000163037
  49. Jakobsson HE, Rodriguez-Pineiro AM, Schutte A, Ermund A, Boysen P, Bemark M, et al. 2015. The composition of the gut microbiota shapes the colon mucus barrier. EMBO Rep. 16: 164-177. https://doi.org/10.15252/embr.201439263
  50. Johansson ME, Jakobsson HE, Holmen-Larsson J, Schutte A, Ermund A, Rodriguez-Pineiro AM, et al. 2015. Normalization of host intestinal mucus layers requires long-term microbial colonization. Cell Host Microbe 18: 582-592. https://doi.org/10.1016/j.chom.2015.10.007
  51. Turpin W, Lee SH, Raygoza Garay JA, Madsen KL, Meddings JB, Bedrani L, et al. 2020. Increased intestinal permeability is associated with later development of Crohn's disease. Gastroenterology 159: 2092-2100.e2095. https://doi.org/10.1053/j.gastro.2020.08.005
  52. Cornick S, Tawiah A, Chadee K. 2015. Roles and regulation of the mucus barrier in the gut. Tissue Barriers 3: e982426.
  53. Heazlewood CK, Cook MC, Eri R, Price GR, Tauro SB, Taupin D, et al. 2008. Aberrant mucin assembly in mice causes endoplasmic reticulum stress and spontaneous inflammation resembling ulcerative colitis. PLoS Med. 5: e54.
  54. Hasnain SZ, Tauro S, Das I, Tong H, Chen AC, Jeffery PL, et al. 2013. IL-10 promotes production of intestinal mucus by suppressing protein misfolding and endoplasmic reticulum stress in goblet cells. Gastroenterology 144: 357-368.e359. https://doi.org/10.1053/j.gastro.2012.10.043
  55. Liu H, Liang Z, Wang F, Zhou C, Zheng X, Hu T, et al. 2019. Exosomes from mesenchymal stromal cells reduce murine colonic inflammation via a macrophage-dependent mechanism. JCI Insight 4: e131273.
  56. Ocansey DKW, Zhang L, Wang Y, Yan Y, Qian H, Zhang X, et al. 2020. Exosome-mediated effects and applications in inflammatory bowel disease. Biol. Rev. Camb. Philos. Soc. 95: 1287-1307. https://doi.org/10.1111/brv.12608
  57. Teng Y, Ren Y, Sayed M, Hu X, Lei C, Kumar A, et al. 2018. Plant-derived exosomal microRNAs shape the gut microbiota. Cell Host Microbe 24: 637-652.e638. https://doi.org/10.1016/j.chom.2018.10.001
  58. Gu L, Ren F, Fang X, Yuan L, Liu G, Wang S. 2021. Exosomal microRNA-181a derived from mesenchymal stem cells improves gut microbiota composition, barrier function, and inflammatory status in an experimental colitis model. Front. Med. 8: 660614.
  59. Alexander M, Hu R, Runtsch MC, Kagele DA, Mosbruger TL, Tolmachova T, et al. 2015. Exosome-delivered microRNAs modulate the inflammatory response to endotoxin. Nat. Commun. 6: 7321.
  60. Nata T, Fujiya M, Ueno N, Moriichi K, Konishi H, Tanabe H, et al. 2013. MicroRNA-146b improves intestinal injury in mouse colitis by activating nuclear factor-κB and improving epithelial barrier function. J. Gene Med. 15: 249-260.
  61. Leoni G, Neumann PA, Kamaly N, Quiros M, Nishio H, Jones HR, et al. 2015. Annexin A1-containing extracellular vesicles and polymeric nanoparticles promote epithelial wound repair. J. Clin. Investig. 125: 1215-1227. https://doi.org/10.1172/JCI76693
  62. Das I, Png CW, Oancea I, Hasnain SZ, Lourie R, Proctor M, et al. 2013. Glucocorticoids alleviate intestinal ER stress by enhancing protein folding and degradation of misfolded proteins. J. Exp. Med. 210: 1201-1216. https://doi.org/10.1084/jem.20121268
  63. Martini E, Krug SM, Siegmund B, Neurath MF, Becker C. 2017. Mend your fences: The epithelial barrier and its relationship with mucosal immunity in inflammatory bowel disease. Cell. Mol. Gastroenterol. Hepatol. 4: 33-46. https://doi.org/10.1016/j.jcmgh.2017.03.007
  64. Mowat AM, Agace WW. 2014. Regional specialization within the intestinal immune system. Nat. Rev. Immunol. 14: 667-685. https://doi.org/10.1038/nri3738
  65. Schulthess J, Pandey S, Capitani M, Rue-Albrecht KC, Arnold I, Franchini F, et al. 2019. The short chain fatty acid butyrate imprints an antimicrobial program in macrophages. Immunity 50: 432-445.e437. https://doi.org/10.1016/j.immuni.2018.12.018
  66. Kang B, Alvarado LJ, Kim T, Lehmann ML, Cho H, He J, et al. 2020. Commensal microbiota drive the functional diversification of colon macrophages. Mucosal Immunol. 13: 216-229. https://doi.org/10.1038/s41385-019-0228-3
  67. Chikina AS, Nadalin F, Maurin M, San-Roman M, Thomas-Bonafos T, Li XV, et al. 2020. Macrophages maintain epithelium integrity by limiting fungal product absorption. Cell 183: 411-428.e416. https://doi.org/10.1016/j.cell.2020.08.048
  68. Bain CC, Scott CL, Uronen-Hansson H, Gudjonsson S, Jansson O, Grip O, et al. 2013. Resident and pro-inflammatory macrophages in the colon represent alternative context-dependent fates of the same Ly6Chi monocyte precursors. Mucosal Immunol. 6: 498-510. https://doi.org/10.1038/mi.2012.89
  69. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. 2004. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol. 25: 677-686. https://doi.org/10.1016/j.it.2004.09.015
  70. Gordon S, Martinez FO. 2010. Alternative activation of macrophages: mechanism and functions. Immunity 32: 593-604. https://doi.org/10.1016/j.immuni.2010.05.007
  71. Nalle SC, Turner JR. 2015. Intestinal barrier loss as a critical pathogenic link between inflammatory bowel disease and graft-versushost disease. Mucosal Immunol. 8: 720-730. https://doi.org/10.1038/mi.2015.40
  72. Rubio CA, Langner C, Schmidt PT. 2018. Partial to complete abrogation of the subepithelial macrophage barrier against the gut microbiota in patients with ulcerative colitis and Crohn's colitis. Histopathology 72: 580-587. https://doi.org/10.1111/his.13417
  73. Vivier E, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G, et al. 2018. Innate lymphoid cells: 10 years on. Cell 174: 1054-1066. https://doi.org/10.1016/j.cell.2018.07.017
  74. Goto Y, Ivanov, II. 2013. Intestinal epithelial cells as mediators of the commensal-host immune crosstalk. Immunol. Cell Biol. 91: 204-214. https://doi.org/10.1038/icb.2012.80
  75. Pickard JM, Maurice CF, Kinnebrew MA, Abt MC, Schenten D, Golovkina TV, et al. 2014. Rapid fucosylation of intestinal epithelium sustains host-commensal symbiosis in sickness. Nature 514: 638-641. https://doi.org/10.1038/nature13823
  76. Ibiza S, Garcia-Cassani B, Ribeiro H, Carvalho T, Almeida L, Marques R, et al. 2016. Glial-cell-derived neuroregulators control type 3 innate lymphoid cells and gut defence. Nature 535: 440-443. https://doi.org/10.1038/nature18644
  77. Godinho-Silva C, Domingues RG, Rendas M, Raposo B, Ribeiro H, da Silva JA, et al. 2019. Light-entrained and brain-tuned circadian circuits regulate ILC3s and gut homeostasis. Nature 574: 254-258. https://doi.org/10.1038/s41586-019-1579-3
  78. Buela KA, Omenetti S, Pizarro TT. 2015. Cross-talk between type 3 innate lymphoid cells and the gut microbiota in inflammatory bowel disease. Curr. Opin. Gastroenterol. 31: 449-455. https://doi.org/10.1097/MOG.0000000000000217
  79. von Moltke J, Ji M, Liang HE, Locksley RM. 2016. Tuft-cell-derived IL-25 regulates an intestinal ILC2-epithelial response circuit. Nature. 529: 221-225. https://doi.org/10.1038/nature16161
  80. Kiss EA, Vonarbourg C, Kopfmann S, Hobeika E, Finke D, Esser C, et al. 2011. Natural aryl hydrocarbon receptor ligands control organogenesis of intestinal lymphoid follicles. Science 334: 1561-1565. https://doi.org/10.1126/science.1214914
  81. Li Y, Innocentin S, Withers DR, Roberts NA, Gallagher AR, Grigorieva EF, et al. 2011. Exogenous stimuli maintain intraepithelial lymphocytes via aryl hydrocarbon receptor activation. Cell 147: 629-640. https://doi.org/10.1016/j.cell.2011.09.025
  82. Qiu J, Heller JJ, Guo X, Chen ZM, Fish K, Fu YX, et al. 2012. The aryl hydrocarbon receptor regulates gut immunity through modulation of innate lymphoid cells. Immunity 36: 92-104. https://doi.org/10.1016/j.immuni.2011.11.011
  83. Matarrese P, Falzano L, Fabbri A, Gambardella L, Frank C, Geny B, et al. 2007. Clostridium difficile toxin B causes apoptosis in epithelial cells by thrilling mitochondria. Involvement of ATP-sensitive mitochondrial potassium channels. J. Biol. Chem. 282: 9029-9041. https://doi.org/10.1074/jbc.M607614200
  84. Dean P, Kenny B. 2004. Intestinal barrier dysfunction by enteropathogenic Escherichia coli is mediated by two effector molecules and a bacterial surface protein. Mol. Microbiol. 54: 665-675. https://doi.org/10.1111/j.1365-2958.2004.04308.x
  85. Swanson PA, 2nd, Kumar A, Samarin S, Vijay-Kumar M, Kundu K, Murthy N, et al. 2011. Enteric commensal bacteria potentiate epithelial restitution via reactive oxygen species-mediated inactivation of focal adhesion kinase phosphatases. Proc. Nat. Acad. Sci. USA 108: 8803-8808. https://doi.org/10.1073/pnas.1010042108
  86. Saxena A, Lopes F, Poon KKH, McKay DM. 2017. Absence of the NOD2 protein renders epithelia more susceptible to barrier dysfunction due to mitochondrial dysfunction. Am. J. Physiol. Gastroint. Liver Physiol. 313: G26-G38. https://doi.org/10.1152/ajpgi.00070.2017
  87. Soderholm JD, Olaison G, Peterson KH, Franzen LE, Lindmark T, Wiren M, et al. 2002. Augmented increase in tight junction permeability by luminal stimuli in the non-inflamed ileum of Crohn's disease. Gut 50: 307-313. https://doi.org/10.1136/gut.50.3.307
  88. Rao R. 2008. Oxidative stress-induced disruption of epithelial and endothelial tight junctions. Front. Biosci. 13: 7210-7226. https://doi.org/10.2741/3223
  89. Gangwar R, Meena AS, Shukla PK, Nagaraja AS, Dorniak PL, Pallikuth S, et al. 2017. Calcium-mediated oxidative stress: a common mechanism in tight junction disruption by different types of cellular stress. Biochem. J. 474: 731-749. https://doi.org/10.1042/BCJ20160679
  90. Reed DE, Barajas-Lopez C, Cottrell G, Velazquez-Rocha S, Dery O, Grady EF, et al. 2003. Mast cell tryptase and proteinaseactivated receptor 2 induce hyperexcitability of guinea-pig submucosal neurons. J. Physiol. 547: 531-542. https://doi.org/10.1113/jphysiol.2002.032011
  91. Kulka M, Sheen CH, Tancowny BP, Grammer LC, Schleimer RP. 2008. Neuropeptides activate human mast cell degranulation and chemokine production. Immunology 123: 398-410. https://doi.org/10.1111/j.1365-2567.2007.02705.x
  92. Huh JR, Veiga-Fernandes H. 2020. Neuroimmune circuits in inter-organ communication. Nat. Rev. Immunol. 20: 217-228. https://doi.org/10.1038/s41577-019-0247-z
  93. Muller PA, Koscso B, Rajani GM, Stevanovic K, Berres ML, Hashimoto D, et al. 2014. Crosstalk between muscularis macrophages and enteric neurons regulates gastrointestinal motility. Cell 158: 300-313. https://doi.org/10.1016/j.cell.2014.04.050
  94. Gabanyi I, Muller PA, Feighery L, Oliveira TY, Costa-Pinto FA, Mucida D. 2016. Neuro-immune interactions drive tissue programming in intestinal macrophages. Cell 164: 378-391. https://doi.org/10.1016/j.cell.2015.12.023
  95. Matheis F, Muller PA, Graves CL, Gabanyi I, Kerner ZJ, Costa-Borges D, et al. 2020. Adrenergic signaling in muscularis macrophages limits infection-induced neuronal loss. Cell 180: 64-78.e16. https://doi.org/10.1016/j.cell.2019.12.002
  96. Levy M, Thaiss CA, Zeevi D, Dohnalova L, Zilberman-Schapira G, Mahdi JA, et al. 2015. Microbiota-modulated metabolites shape the intestinal microenvironment by regulating NLRP6 inflammasome signaling. Cell 163: 1428-1443. https://doi.org/10.1016/j.cell.2015.10.048
  97. Jarret A, Jackson R, Duizer C, Healy ME, Zhao J, Rone JM, et al. 2020. Enteric nervous system-derived IL-18 Orchestrates Mucosal barrier immunity. Cell 180: 50-63.e12. https://doi.org/10.1016/j.cell.2019.12.016
  98. Lai NY, Musser MA, Pinho-Ribeiro FA, Baral P, Jacobson A, Ma P, et al. 2020. Gut-innervating nociceptor neurons regulate Peyer's patch microfold cells and SFB levels to mediate Salmonella host defense. Cell 180: 33-49.e22. https://doi.org/10.1016/j.cell.2019.11.014
  99. Kabouridis PS, Lasrado R, McCallum S, Chng SH, Snippert HJ, Clevers H, et al. 2015. Microbiota controls the homeostasis of glial cells in the gut lamina propria. Neuron 85: 289-295. https://doi.org/10.1016/j.neuron.2014.12.037
  100. Ge X, Ding C, Zhao W, Xu L, Tian H, Gong J, et al. 2017. Antibiotics-induced depletion of mice microbiota induces changes in host serotonin biosynthesis and intestinal motility. J. Transl. Med. 15: 13.
  101. McVey Neufeld KA, Perez-Burgos A, Mao YK, Bienenstock J, Kunze WA. 2015. The gut microbiome restores intrinsic and extrinsic nerve function in germ-free mice accompanied by changes in calbindin. Neurogastroenterol. Motil. 27: 627-636. https://doi.org/10.1111/nmo.12534
  102. Al-Nedawi K, Mian MF, Hossain N, Karimi K, Mao YK, Forsythe P, et al. 2015. Gut commensal microvesicles reproduce parent bacterial signals to host immune and enteric nervous systems. FASEB J. 29: 684-695. https://doi.org/10.1096/fj.14-259721
  103. Mao YK, Kasper DL, Wang B, Forsythe P, Bienenstock J, Kunze WA. 2013. Bacteroides fragilis polysaccharide A is necessary and sufficient for acute activation of intestinal sensory neurons. Nat. Commun. 4: 1465.
  104. Khoshdel A, Verdu EF, Kunze W, McLean P, Bergonzelli G, Huizinga JD. 2013. Bifidobacterium longum NCC3001 inhibits AH neuron excitability. Neurogastroenterol. Motil. 25: e478-484. https://doi.org/10.1111/nmo.12147
  105. Duboc H, Rajca S, Rainteau D, Benarous D, Maubert MA, Quervain E, et al. 2013. Connecting dysbiosis, bile-acid dysmetabolism and gut inflammation in inflammatory bowel diseases. Gut 62: 531-539. https://doi.org/10.1136/gutjnl-2012-302578
  106. Lajczak-McGinley NK, Porru E, Fallon CM, Smyth J, Curley C, McCarron PA, et al. 2020. The secondary bile acids, ursodeoxycholic acid and lithocholic acid, protect against intestinal inflammation by inhibition of epithelial apoptosis. Physiol. Rep. 8: e14456.
  107. Golden JM, Escobar OH, Nguyen MVL, Mallicote MU, Kavarian P, Frey MR, et al. 2018. Ursodeoxycholic acid protects against intestinal barrier breakdown by promoting enterocyte migration via EGFR- and COX-2-dependent mechanisms. Am. J. Physiol. Gastrointest. Liver Physiol. 315: G259-G271. https://doi.org/10.1152/ajpgi.00354.2017
  108. Van den Bossche L, Hindryckx P, Devisscher L, Devriese S, Van Welden S, Holvoet T, et al. 2017. Ursodeoxycholic acid and its taurine- or glycine-conjugated species reduce colitogenic dysbiosis and equally suppress experimental colitis in mice. Appl. Environ. Microbiol. 83: e02766-16.
  109. Ward JBJ, Lajczak NK, Kelly OB, O'Dwyer AM, Giddam AK, J NG, et al. 2017. Ursodeoxycholic acid and lithocholic acid exert antiinflammatory actions in the colon. Am. J. Physiol. Gastrointest. Liver Physiol. 312: G550-g558. https://doi.org/10.1152/ajpgi.00256.2016
  110. Sinha SR, Haileselassie Y, Nguyen LP, Tropini C, Wang M, Becker LS, et al. 2020. Dysbiosis-induced secondary bile acid deficiency promotes intestinal inflammation. Cell Host Mcrobe 27: 659-670.e655. https://doi.org/10.1016/j.chom.2020.01.021
  111. Smith PM, Howitt MR, Panikov N, Michaud M, Gallini CA, Bohlooly YM, et al. 2013. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis. Science 341: 569-573. https://doi.org/10.1126/science.1241165
  112. Chen G, Ran X, Li B, Li Y, He D, Huang B, et al. 2018. Sodium butyrate inhibits inflammation and maintains epithelium barrier integrity in a TNBS-induced inflammatory bowel disease mice model. EBioMedicine 30: 317-325. https://doi.org/10.1016/j.ebiom.2018.03.030
  113. Zheng L, Kelly CJ, Battista KD, Schaefer R, Lanis JM, Alexeev EE, et al. 2017. Microbial-derived butyrate promotes epithelial barrier function through IL-10 receptor-dependent repression of claudin-2. J. Immunol. 199: 2976-2984. https://doi.org/10.4049/jimmunol.1700105
  114. Miao W, Wu X, Wang K, Wang W, Wang Y, Li Z, et al. 2016. Sodium butyrate promotes reassembly of tight junctions in Caco-2 Monolayers involving inhibition of MLCK/MLC2 pathway and phosphorylation of PKCβ2. Int. J. Mol. Sci. 17: 1696.
  115. Valenzano MC, DiGuilio K, Mercado J, Teter M, To J, Ferraro B, et al. 2015. Remodeling of tight junctions and enhancement of barrier integrity of the CACO-2 intestinal epithelial cell layer by micronutrients. PLoS One 10: e0133926.
  116. Yan H, Ajuwon KM. 2017. Butyrate modifies intestinal barrier function in IPEC-J2 cells through a selective upregulation of tight junction proteins and activation of the Akt signaling pathway. PLoS One 12: e0179586.
  117. Wang HB, Wang PY, Wang X, Wan YL, Liu YC. 2012. Butyrate enhances intestinal epithelial barrier function via up-regulation of tight junction protein Claudin-1 transcription. Dig. Dis. Sci. 57: 3126-3135. https://doi.org/10.1007/s10620-012-2259-4
  118. Li X, Zhang ZH, Zabed HM, Yun J, Zhang G, Qi X. 2021. An insight into the roles of dietary tryptophan and its metabolites in intestinal inflammation and inflammatory bowel disease. Mol. Nutr. Food Res. 65: e2000461.
  119. Borisova MA, Snytnikova OA, Litvinova EA, Achasova KM, Babochkina TI, Pindyurin AV, et al. 2020. Fucose ameliorates tryptophan metabolism and behavioral abnormalities in a mouse model of chronic colitis. Nutrients 12: 445.
  120. Gasaly N, de Vos P, Hermoso MA. 2021. Impact of bacterial metabolites on gut barrier function and host immunity: A focus on bacterial metabolism and its relevance for intestinal inflammation. Front. Immunol. 12: 658354.
  121. Park SL, Justiniano R, Williams JD, Cabello CM, Qiao S, Wondrak GT. 2015. The tryptophan-derived endogenous Aryl hydrocarbon receptor ligand 6-formylindolo[3,2-b]Carbazole is a nanomolar UVA photosensitizer in epidermal keratinocytes. J. Investig. Dermatol. 135: 1649-1658. https://doi.org/10.1038/jid.2014.503
  122. Yamada T, Horimoto H, Kameyama T, Hayakawa S, Yamato H, Dazai M, et al. 2016. Constitutive aryl hydrocarbon receptor signaling constrains type I interferon-mediated antiviral innate defense. Nat. Immunol. 17: 687-694. https://doi.org/10.1038/ni.3422
  123. Lamas B, Richard ML, Leducq V, Pham HP, Michel ML, Da Costa G, et al. 2016. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands. Nat. Med. 22: 598-605. https://doi.org/10.1038/nm.4102