Acknowledgement
This work was supported by the National Research Foundation of Korea grant funded by Korea government (NRF-NRF2022R1A2C4001251), the Internal R&D program of KAERI (523210) funded by Ministry of Science and ICT (MSIT), and research grant from Kongju National University in 2021 under grant 2021-0419-01.
References
- Merino N, Aronson HS, Bojanova DP, Feyhl-Buska J, Wong ML, Zhang S, et al. 2019. Living at the extremes: extremophiles and the limits of life in a planetary context. Front. Microbiol. 10: 780.
- Daletos G, Ebrahim W, Ancheeva E, El-Neketi M, Song W, Lin W, et al. 2018. Natural products from deep-sea-derived fungi a new source of novel bioactive compounds? Curr. Med. Chem. 25: 186-207. https://doi.org/10.2174/0929867324666170314150121
- Gabani P, Singh OV. 2013. Radiation-resistant extremophiles and their potential in biotechnology and therapeutics. Appl. Microbiol. Biotechnol. 97: 993-1004. https://doi.org/10.1007/s00253-012-4642-7
- Cox MM, Battista JR. 2005. Deinococcus radiodurans - the consummate survivor. Nat. Rev. Microbiol. 3: 882-892. https://doi.org/10.1038/nrmicro1264
- Slade D, Radman M. 2011. Oxidative stress resistance in Deinococcus radiodurans. Microbiol. Mol. Biol. Rev. 75: 133-191. https://doi.org/10.1128/MMBR.00015-10
- Maqbool I, Sudharsan M, Kanimozhi G, Alrashood ST, Khan HA, Prasad NR. 2020. Crude cell-free extract from Deinococcus radiodurans exhibit anticancer activity by inducing apoptosis in triple-negative breast cancer cells. Front. Cell Dev. Biol. 8: 707.
- Choi YJ, Hur JM, Lim S, Jo M, Kim DH, Choi JI. 2014. Induction of apoptosis by deinoxanthin in human cancer cells. Anticancer Res. 34: 1829-1835.
- Lin SM, Baek CY, Jung JH, Kim WS, Song HY, Lee JH, et al. 2020. Antioxidant activities of an exopolysaccharide (DeinoPol) produced by the extreme radiation-resistant bacterium Deinococcus radiodurans. Sci. Rep. 10: 55.
- Xiao TS. 2017. Innate immunity and inflammation. Cell Mol. Immunol. 14: 1-3. https://doi.org/10.1038/cmi.2016.45
- Agrawal A, Agrawal S, Gupta S. 2017. Role of dendritic cells in inflammation and loss of tolerance in the elderly. Front. Immunol. 8: 896.
- Audiger C, Rahman MJ, Yun TJ, Tarbell KV, Lesage S. 2017. The importance of dendritic cells in maintaining immune tolerance. J. Immunol. 198: 2223-2231.
- Yoo S, Ha SJ. 2016. Generation of tolerogenic dendritic cells and their therapeutic applications. Immune Netw. 16: 52-60. https://doi.org/10.4110/in.2016.16.1.52
- Fucikova J, Palova-Jelinkova L, Bartunkova J, Spisek R. 2019. Induction of tolerance and immunity by dendritic cells: mechanisms and clinical applications. Front. Immunol. 10: 2393.
- Obregon C, Kumar R, Pascual MA, Vassalli G, Golshayan D. 2017. Update on dendritic cell-induced immunological and clinical tolerance. Front. Immunol. 8: 1514.
- Kim MK, Jang SA, Namkoong S, Lee JW, Park Y, Kim SH, et al. 2020. The Aqueous extract of radio-resistant Deinococcus actinosclerus BM2(T) suppresses lipopolysaccharide-mediated inflammation in RAW264.7 cells. J. Microbiol. Biotechnol. 30: 583-590. https://doi.org/10.4014/jmb.1911.11003
- Matheu MP, Sen D, Cahalan MD, Parker I. 2008. Generation of bone marrow derived murine dendritic cells for use in 2-photon imaging. J. Vis. Exp. 9: 773.
- Song HY, Sik Kim W, Kim JM, Bak DH, Moo Han J, Lim ST, et al. 2019. A hydroxyethyl derivative of chrysin exhibits antiinflammatory activity in dendritic cells and protective effects against dextran sodium salt-induced colitis in mice. Int. Immunopharmacol. 77: 105958.
- Hidalgo-Cantabrana C, Algieri F, Rodriguez-Nogales A, Vezza T, Martinez-Camblor P, Margolles A, et al. 2016. Effect of a ropy exopolysaccharide-producing Bifidobacterium animalis subsp. lactis strain orally administered on DSS-induced colitis mice model. Front. Microbiol. 7: 868.
- Meers GK, Bohnenberger H, Reichardt HM, Luhder F, Reichardt SD. 2018. Impaired resolution of DSS-induced colitis in mice lacking the glucocorticoid receptor in myeloid cells. PLoS One 13: e0190846.
- Thomson AW, Robbins PD. 2008. Tolerogenic dendritic cells for autoimmune disease and transplantation. Ann. Rheum. Dis. 67 Suppl 3: iii90-96.
- Joffre O, Nolte MA, Sporri R, Reis e Sousa C. 2009. Inflammatory signals in dendritic cell activation and the induction of adaptive immunity. Immunol. Rev. 227: 234-247. https://doi.org/10.1111/j.1600-065X.2008.00718.x
- Jenkins MK, Schwartz RH. 1987. Antigen presentation by chemically modified splenocytes induces antigen-specific T cell unresponsiveness in vitro and in vivo. J. Exp. Med. 165: 302-319. https://doi.org/10.1084/jem.165.2.302
- Morante-Palacios O, Fondelli F, Ballestar E, Martinez-Caceres EM. 2021. Tolerogenic dendritic cells in autoimmunity and inflammatory diseases. Trends Immunol. 42: 59-75. https://doi.org/10.1016/j.it.2020.11.001
- Comi M, Amodio G, Gregori S. 2018. Interleukin-10-producing DC-10 is a unique tool to promote tolerance via antigen-specific T regulatory type 1 cells. Front. Immunol. 9: 682.
- Taylor A, Akdis M, Joss A, Akkoc T, Wenig R, Colonna M, et al. 2007. IL-10 inhibits CD28 and ICOS costimulations of T cells via src homology 2 domain-containing protein tyrosine phosphatase 1. J. Allergy Clin. Immunol. 120: 76-83. https://doi.org/10.1016/j.jaci.2007.04.004
- Huang H, Dawicki W, Zhang X, Town J, Gordon JR. 2010. Tolerogenic dendritic cells induce CD4+ CD25hiFoxp3+ regulatory T cell differentiation from CD4+ CD25-/loFoxp3- effector T cells. J. Immunol. 185: 5003-5010. https://doi.org/10.4049/jimmunol.0903446
- Frick JS, Zahir N, Muller M, Kahl F, Bechtold O, Lutz MB, et al. 2006. Colitogenic and non-colitogenic commensal bacteria differentially trigger DC maturation and Th cell polarization: an important role for IL-6. Eur. J. Immunol. 36: 1537-1547. https://doi.org/10.1002/eji.200635840
- Volz T, Skabytska Y, Guenova E, Chen KM, Frick JS, Kirschning CJ, et al. 2014. Nonpathogenic bacteria alleviating atopic dermatitis inflammation induce IL-10-producing dendritic cells and regulatory Tr1 cells. J. Invest. Dermatol. 134: 96-104. https://doi.org/10.1038/jid.2013.291
- Mizoguchi A. 2012. Animal models of inflammatory bowel disease. Prog. Mol. Biol. Transl. Sci. 105: 263-320. https://doi.org/10.1016/B978-0-12-394596-9.00009-3
- Jones-Hall YL, Grisham MB. 2014. Immunopathological characterization of selected mouse models of inflammatory bowel disease: comparison to human disease. Pathophysiology 21: 267-288. https://doi.org/10.1016/j.pathophys.2014.05.002
- Eichele DD, Kharbanda KK. 2017. Dextran sodium sulfate colitis murine model: an indispensable tool for advancing our understanding of inflammatory bowel diseases pathogenesis. World J. Gastroenterol. 23: 6016-6029. https://doi.org/10.3748/wjg.v23.i33.6016
- Pedersen AE, Schmidt EG, Gad M, Poulsen SS, Claesson MH. 2009. Dexamethasone/1alpha-25-dihydroxyvitamin D3-treated dendritic cells suppress colitis in the SCID T-cell transfer model. Immunology 127: 354-364. https://doi.org/10.1111/j.1365-2567.2008.02996.x
- Kim WS, Song HY, Mushtaq S, Kim JM, Byun EH, Yuk JM, et al. 2019. Therapeutic potential of gamma-irradiated resveratrol in ulcerative colitis via the anti-inflammatory activity and differentiation of tolerogenic dendritic cells. Cell. Physiol. Biochem. 52: 1117-1138. https://doi.org/10.33594/000000076
- Cabezon R, Benitez-Ribas D. 2013. Therapeutic potential of tolerogenic dendritic cells in IBD: from animal models to clinical application. Clin. Dev. Immunol. 2013: 789814.
- Cardoso A, Gil Castro A, Martins AC, Carriche GM, Murigneux V, Castro I, et al. 2018. The dynamics of interleukin-10-afforded protection during dextran sulfate sodium-induced colitis. Front. Immunol. 9: 400.
- Zhang W, Liao J, Li H, Dong H, Bai H, Yang A, et al. 2013. Reduction of inflammatory bowel disease-induced tumor development in IL-10 knockout mice with soluble epoxide hydrolase gene deficiency. Mol. Carcinog. 52: 726-738. https://doi.org/10.1002/mc.21918