DOI QR코드

DOI QR Code

Variovorax terrae sp. nov. Isolated from Soil with Potential Antioxidant Activity

  • Woo, Chae Yung (Department of Life Science, College of Natural Sciences, Kyonggi University) ;
  • Kim, Jaisoo (Department of Life Science, College of Natural Sciences, Kyonggi University)
  • Received : 2022.05.13
  • Accepted : 2022.06.27
  • Published : 2022.07.28

Abstract

A white-pigmented, non-motile, gram-negative, and rod-shaped bacterium, designated CYS-02T, was isolated from soil sampled at Suwon, Gyeonggi-do, Republic of Korea. Cells were strictly aerobic, grew optimally at 20-28℃ and hydrolyzed Tween 40. Phylogenetic analysis based on 16S rRNA gene sequence indicated that strain CYS-02T formed a lineage within the family Comamonadaceae and clustered as members of the genus Variovorax. The closest members were Variovorax guangxiensis DSM 27352T (98.6% sequence similarity), Variovorax paradoxus NBRC 15149T (98.5%), and Variovorax gossypii JM-310T (98.3%). The principal respiratory quinone was Q-8 and the major polar lipids contain phosphatidylethanolamine (PE), phosphatidylethanolamine (PG), and diphosphatidylglycerol (DPG). The predominant cellular fatty acids were C16:0, summed feature 3 (C16:1ω7c and/or C16:1ω6c) and summed feature 8 (C18:1ω7c and/or C18:1ω6c). The DNA GC content was 67.7 mol%. The ANI and dDDH values between strain CYS-02T and the closest members in the genus Variovorax were ≤ 79.0 and 22.4%, respectively, and the AAI and POCP values between CYS-02T and the other related species in the family Comamonadaceae were > 70% and > 50%, respectively. The genome of strain CYS-02T showed a putative terpene biosynthetic cluster responsible for antioxidant activity which was supported by DPPH radical scavenging activity test. Based on genomic, phenotypic and chemotaxonomic analyses, strain CYS-02T was classified into a novel species in the genus Variovorax, for which the name Variovorax terrae sp. nov., has been proposed. The type strain is CYS-02T (= KACC 22656T = NBRC 00115645T).

Keywords

Acknowledgement

This work was supported by a Kyonggi University Research Grant (2020-35).

References

  1. Willems A, De Ley J, Gillis M, Kersters K. 1991. Comamonadaceae, a new family encompassing the acidovorans rRNA complex, including Variovorax paradoxus gen. nov., comb. nov., for Alcaligenes paradoxus (Davis 1969). Int. J. Syst. Evol. Microbiol. 41: 445-450.
  2. Han J, Choi H, Lee S, Orwin PM, Kim J, LaRoe SL, et al. 2011. Complete genome sequence of the metabolically versatile plant growthpromoting endophyte Variovorax paradoxus S110. J. Bacteriol. 193: 1183-1190. https://doi.org/10.1128/JB.00925-10
  3. Jiang F, Chen L, Belimov AA, Shaposhnikov AI, Gong F, Meng X, et al. 2012. Multiple impacts of the plant growth-promoting rhizobacterium Variovorax paradoxus 5C-2 on nutrient and ABA relations of Pisum sativum. J. Exp. Bot. 63: 6421-6430. https://doi.org/10.1093/jxb/ers301
  4. Chen L, Dodd IC, Theobald JC, Belimov AA, Davies WJ. 2013. The rhizobacterium Variovorax paradoxus 5C-2, containing ACC deaminase, promotes growth and development of Arabidopsis thaliana via an ethylene-dependent pathway. J. Exp. Bot. 64: 1565-1573. https://doi.org/10.1093/jxb/ert031
  5. Kurth C, Schieferdecker S, Athanasopoulou K, Seccareccia I, Nett M. 2016. Variochelins, lipopeptide siderophores from Variovorax boronicumulans discovered by genome mining. J. Nat. Prod. 79: 865-872. https://doi.org/10.1021/acs.jnatprod.5b00932
  6. Sun S, Yang W, Fang W, Zhao Y, Guo L, Dai Y. 2018. The plant growth-promoting rhizobacterium Variovorax boronicumulans CGMCC 4969 regulates the level of indole-3-acetic acid synthesized from indole-3-acetonitrile. Appl. Environ. Microbiol. 84: 298
  7. Leadbetter JR, Greenberg EP. 2000. Metabolism of acyl-homoserine lactone quorum-sensing signals by Variovorax paradoxus. J. Bacteriol. 182: 6921-6926. https://doi.org/10.1128/JB.182.24.6921-6926.2000
  8. Satola B, Wubbeler JH, Steinbuchel A. 2013. Metabolic characteristics of the species Variovorax paradoxus. Appl. Microbiol. Biotechnol. 97: 541-560. https://doi.org/10.1007/s00253-012-4585-z
  9. Du J, Yi T. 2016. Biosynthesis of silver nanoparticles by Variovorax guangxiensis THG-SQL3 and their antimicrobial potential. Mater. Lett. 178: 75-78. https://doi.org/10.1016/j.matlet.2016.04.069
  10. Gao J, Yuan K, Wang X, Qiu T, Li J, Liu H, et al. 2015. Variovorax guangxiensis sp. nov., an aerobic, 1-aminocyclopropane-1-carboxylate deaminase producing bacterium isolated from banana rhizosphere. Antonie Van Leeuwenhoek 107: 65-72. https://doi.org/10.1007/s10482-014-0304-3
  11. Kampfer P, Busse H, McInroy JA, Glaeser SP. 2015. Variovorax gossypii sp. nov., isolated from Gossypium hirsutum. Int. J. Syst. Evol. Microbiol. 65: 4335-4340. https://doi.org/10.1099/ijsem.0.000581
  12. Nguyen TM, Kim J. 2016. Description of Variovorax humicola sp. nov., isolated from a forest topsoil. Int. J. Syst. Evol. Microbiol. 66: 2520-2527. https://doi.org/10.1099/ijsem.0.001082
  13. Nguyen TM, Trinh NH, Kim J. 2018. Proposal of three novel species of soil bacteria, Variovorax ureilyticus, Variovorax rhizosphaerae, and Variovorax robiniae, in the family Comamonadaceae. J. Microbiol. 56: 485-492. https://doi.org/10.1007/s12275-018-8025-3
  14. Dahal RH, Chaudhary DK, Kim J. 2018. Pinisolibacter ravus gen. nov., sp. nov., isolated from pine forest soil and allocation of the genera Ancalomicrobium and Pinisolibacter to the family Ancalomicrobiaceae fam. nov., and emendation of the genus Ancalomicrobium Staley 1968. Int. J. Syst. Evol. Microbiol. 68: 1955-1962. https://doi.org/10.1099/ijsem.0.002772
  15. Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA, Olsen GJ. 2008. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl. Environ. Microbiol. 74: 2461-2470. https://doi.org/10.1128/AEM.02272-07
  16. Yoon S, Ha S, Kwon S, Lim J, Kim Y, Seo H, et al. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 67: 1613.
  17. Pruesse E, Peplies J, Glockner FO. 2012. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28: 1823-1829. https://doi.org/10.1093/bioinformatics/bts252
  18. Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35: 1547.
  19. Doetsch RN. 1981. Determinative methods of light microscopy, pp. 21-33. In Gerdhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA, Krieg NR, Phillips GB (eds.), Manual of Methods for General Bacteriology. American Society for Microbiology, Washington, D.C., USA.
  20. Breznak JA, Costilow RN. 2007. Physicochemical factors in growth, pp. 309-329. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR (eds.), Methods for General and Molecular Microbiology, 3rd Ed. ASM press, Washington, D.C., USA.
  21. Smibert RM, Krieg NR. 1994. Phenotypic characterization, pp. 607-654. In Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds.), Methods for General and Molecular Bacteriology, American Society for Microbiology, Washington, D.C., USA.
  22. Sasser M. 2006. Bacterial identification by gas chromatographic analysis of fatty acids methyl esters (GC-FAME). Microbial ID, Newark, New York., USA.
  23. Minnikin DE, O'donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, et al. 1984. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J. Microbiol. Methods 2: 233-241. https://doi.org/10.1016/0167-7012(84)90018-6
  24. Komagata K, Suzuki K. 1988. 4 Lipid and cell-wall analysis in bacterial systematics, pp. 161-207. In Colwell RR, Grigorova R (eds.), Methods in Microbiology, vol. 19, Elsevier, Amsterdam, The Netherlands.
  25. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19: 455-477. https://doi.org/10.1089/cmb.2012.0021
  26. Zhang Z, Schwartz S, Wagner L, Miller W. 2000. A greedy algorithm for aligning DNA sequences. J. Comput. Biol. 7: 203-214. https://doi.org/10.1089/10665270050081478
  27. Lee I, Chalita M, Ha S, Na S, Yoon S, Chun J. 2017. ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int. J. Syst. Evol. Microbiol. 67: 2053-2057. https://doi.org/10.1099/ijsem.0.001872
  28. Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, et al. 2016. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 44: 6614-6624. https://doi.org/10.1093/nar/gkw569
  29. Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, et al. 2008. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9: 75.
  30. Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP, Medema MH, et al. 2021. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res. 49: W29-W35. https://doi.org/10.1093/nar/gkab335
  31. Yoon S, Ha S, Lim J, Kwon S, Chun J. 2017. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 110: 1281-1286. https://doi.org/10.1007/s10482-017-0844-4
  32. Meier-Kolthoff J, Auch AF, Klenk H, Goker M. 2013. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14: 60.
  33. Steinegger M, Soding J. 2017. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol. 35: 1026-1028. https://doi.org/10.1038/nbt.3988
  34. Kim D, Park S, Chun J. 2021. Introducing EzAAI: a pipeline for high throughput calculations of prokaryotic average amino acid identity. J. Microbiol. 59: 476-480. https://doi.org/10.1007/s12275-021-1154-0
  35. Qin QL, Xie BB, Zhang XY, Chen XL, Zhou BC, Zhou J, et al. 2014. A proposed genus boundary for the prokaryotes based on genomic insights. J. Bacteriol. 196: 2210-2215. https://doi.org/10.1128/JB.01688-14
  36. Dahal RH, Shim DS, Kim J. 2017. Development of actinobacterial resources for functional cosmetics. J. Cosmet. Dermatol. 16: 243-252. https://doi.org/10.1111/jocd.12304
  37. Richter M, Rossello-Mora R. 2009. Shifting the genomic gold standard for the prokaryotic species definition. Proc. Natl. Acad. Sci. USA 106: 19126-19131. https://doi.org/10.1073/pnas.0906412106
  38. Volpiano CG, Sant'Anna FH, da Mota FF, Sangal V, Sutchliffe I, Munusamy M, et al. 2021. Proposal of Carbonactinosporaceae fam. nov. within the class Actinomycetia. Reclassification of Streptomyces thermoautotrophicus as Carbonactinospora thermoautotrophica gen. nov., comb. nov. Syst. Appl. Microbiol. 44: 126223.
  39. Gonzalez-Burgos E, Gomez-Serranillos MP. 2012. Terpene compounds in nature: a review of their potential antioxidant activity. Curr. Med. Chem. 19: 5319-5341. https://doi.org/10.2174/092986712803833335