Acknowledgement
This work was supported by a Kyonggi University Research Grant (2020-35).
References
- Willems A, De Ley J, Gillis M, Kersters K. 1991. Comamonadaceae, a new family encompassing the acidovorans rRNA complex, including Variovorax paradoxus gen. nov., comb. nov., for Alcaligenes paradoxus (Davis 1969). Int. J. Syst. Evol. Microbiol. 41: 445-450.
- Han J, Choi H, Lee S, Orwin PM, Kim J, LaRoe SL, et al. 2011. Complete genome sequence of the metabolically versatile plant growthpromoting endophyte Variovorax paradoxus S110. J. Bacteriol. 193: 1183-1190. https://doi.org/10.1128/JB.00925-10
- Jiang F, Chen L, Belimov AA, Shaposhnikov AI, Gong F, Meng X, et al. 2012. Multiple impacts of the plant growth-promoting rhizobacterium Variovorax paradoxus 5C-2 on nutrient and ABA relations of Pisum sativum. J. Exp. Bot. 63: 6421-6430. https://doi.org/10.1093/jxb/ers301
- Chen L, Dodd IC, Theobald JC, Belimov AA, Davies WJ. 2013. The rhizobacterium Variovorax paradoxus 5C-2, containing ACC deaminase, promotes growth and development of Arabidopsis thaliana via an ethylene-dependent pathway. J. Exp. Bot. 64: 1565-1573. https://doi.org/10.1093/jxb/ert031
- Kurth C, Schieferdecker S, Athanasopoulou K, Seccareccia I, Nett M. 2016. Variochelins, lipopeptide siderophores from Variovorax boronicumulans discovered by genome mining. J. Nat. Prod. 79: 865-872. https://doi.org/10.1021/acs.jnatprod.5b00932
- Sun S, Yang W, Fang W, Zhao Y, Guo L, Dai Y. 2018. The plant growth-promoting rhizobacterium Variovorax boronicumulans CGMCC 4969 regulates the level of indole-3-acetic acid synthesized from indole-3-acetonitrile. Appl. Environ. Microbiol. 84: 298
- Leadbetter JR, Greenberg EP. 2000. Metabolism of acyl-homoserine lactone quorum-sensing signals by Variovorax paradoxus. J. Bacteriol. 182: 6921-6926. https://doi.org/10.1128/JB.182.24.6921-6926.2000
- Satola B, Wubbeler JH, Steinbuchel A. 2013. Metabolic characteristics of the species Variovorax paradoxus. Appl. Microbiol. Biotechnol. 97: 541-560. https://doi.org/10.1007/s00253-012-4585-z
- Du J, Yi T. 2016. Biosynthesis of silver nanoparticles by Variovorax guangxiensis THG-SQL3 and their antimicrobial potential. Mater. Lett. 178: 75-78. https://doi.org/10.1016/j.matlet.2016.04.069
- Gao J, Yuan K, Wang X, Qiu T, Li J, Liu H, et al. 2015. Variovorax guangxiensis sp. nov., an aerobic, 1-aminocyclopropane-1-carboxylate deaminase producing bacterium isolated from banana rhizosphere. Antonie Van Leeuwenhoek 107: 65-72. https://doi.org/10.1007/s10482-014-0304-3
- Kampfer P, Busse H, McInroy JA, Glaeser SP. 2015. Variovorax gossypii sp. nov., isolated from Gossypium hirsutum. Int. J. Syst. Evol. Microbiol. 65: 4335-4340. https://doi.org/10.1099/ijsem.0.000581
- Nguyen TM, Kim J. 2016. Description of Variovorax humicola sp. nov., isolated from a forest topsoil. Int. J. Syst. Evol. Microbiol. 66: 2520-2527. https://doi.org/10.1099/ijsem.0.001082
- Nguyen TM, Trinh NH, Kim J. 2018. Proposal of three novel species of soil bacteria, Variovorax ureilyticus, Variovorax rhizosphaerae, and Variovorax robiniae, in the family Comamonadaceae. J. Microbiol. 56: 485-492. https://doi.org/10.1007/s12275-018-8025-3
- Dahal RH, Chaudhary DK, Kim J. 2018. Pinisolibacter ravus gen. nov., sp. nov., isolated from pine forest soil and allocation of the genera Ancalomicrobium and Pinisolibacter to the family Ancalomicrobiaceae fam. nov., and emendation of the genus Ancalomicrobium Staley 1968. Int. J. Syst. Evol. Microbiol. 68: 1955-1962. https://doi.org/10.1099/ijsem.0.002772
- Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA, Olsen GJ. 2008. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl. Environ. Microbiol. 74: 2461-2470. https://doi.org/10.1128/AEM.02272-07
- Yoon S, Ha S, Kwon S, Lim J, Kim Y, Seo H, et al. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 67: 1613.
- Pruesse E, Peplies J, Glockner FO. 2012. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28: 1823-1829. https://doi.org/10.1093/bioinformatics/bts252
- Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35: 1547.
- Doetsch RN. 1981. Determinative methods of light microscopy, pp. 21-33. In Gerdhardt P, Murray RGE, Costilow RN, Nester EW, Wood WA, Krieg NR, Phillips GB (eds.), Manual of Methods for General Bacteriology. American Society for Microbiology, Washington, D.C., USA.
- Breznak JA, Costilow RN. 2007. Physicochemical factors in growth, pp. 309-329. In Reddy CA, Beveridge TJ, Breznak JA, Marzluf GA, Schmidt TM, Snyder LR (eds.), Methods for General and Molecular Microbiology, 3rd Ed. ASM press, Washington, D.C., USA.
- Smibert RM, Krieg NR. 1994. Phenotypic characterization, pp. 607-654. In Gerhardt P, Murray RGE, Wood WA, Krieg NR (eds.), Methods for General and Molecular Bacteriology, American Society for Microbiology, Washington, D.C., USA.
- Sasser M. 2006. Bacterial identification by gas chromatographic analysis of fatty acids methyl esters (GC-FAME). Microbial ID, Newark, New York., USA.
- Minnikin DE, O'donnell AG, Goodfellow M, Alderson G, Athalye M, Schaal A, et al. 1984. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J. Microbiol. Methods 2: 233-241. https://doi.org/10.1016/0167-7012(84)90018-6
- Komagata K, Suzuki K. 1988. 4 Lipid and cell-wall analysis in bacterial systematics, pp. 161-207. In Colwell RR, Grigorova R (eds.), Methods in Microbiology, vol. 19, Elsevier, Amsterdam, The Netherlands.
- Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, et al. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19: 455-477. https://doi.org/10.1089/cmb.2012.0021
- Zhang Z, Schwartz S, Wagner L, Miller W. 2000. A greedy algorithm for aligning DNA sequences. J. Comput. Biol. 7: 203-214. https://doi.org/10.1089/10665270050081478
- Lee I, Chalita M, Ha S, Na S, Yoon S, Chun J. 2017. ContEst16S: an algorithm that identifies contaminated prokaryotic genomes using 16S RNA gene sequences. Int. J. Syst. Evol. Microbiol. 67: 2053-2057. https://doi.org/10.1099/ijsem.0.001872
- Tatusova T, DiCuccio M, Badretdin A, Chetvernin V, Nawrocki EP, Zaslavsky L, et al. 2016. NCBI prokaryotic genome annotation pipeline. Nucleic Acids Res. 44: 6614-6624. https://doi.org/10.1093/nar/gkw569
- Aziz RK, Bartels D, Best AA, DeJongh M, Disz T, Edwards RA, et al. 2008. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9: 75.
- Blin K, Shaw S, Kloosterman AM, Charlop-Powers Z, van Wezel GP, Medema MH, et al. 2021. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res. 49: W29-W35. https://doi.org/10.1093/nar/gkab335
- Yoon S, Ha S, Lim J, Kwon S, Chun J. 2017. A large-scale evaluation of algorithms to calculate average nucleotide identity. Antonie Van Leeuwenhoek 110: 1281-1286. https://doi.org/10.1007/s10482-017-0844-4
- Meier-Kolthoff J, Auch AF, Klenk H, Goker M. 2013. Genome sequence-based species delimitation with confidence intervals and improved distance functions. BMC Bioinformatics 14: 60.
- Steinegger M, Soding J. 2017. MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets. Nat. Biotechnol. 35: 1026-1028. https://doi.org/10.1038/nbt.3988
- Kim D, Park S, Chun J. 2021. Introducing EzAAI: a pipeline for high throughput calculations of prokaryotic average amino acid identity. J. Microbiol. 59: 476-480. https://doi.org/10.1007/s12275-021-1154-0
- Qin QL, Xie BB, Zhang XY, Chen XL, Zhou BC, Zhou J, et al. 2014. A proposed genus boundary for the prokaryotes based on genomic insights. J. Bacteriol. 196: 2210-2215. https://doi.org/10.1128/JB.01688-14
- Dahal RH, Shim DS, Kim J. 2017. Development of actinobacterial resources for functional cosmetics. J. Cosmet. Dermatol. 16: 243-252. https://doi.org/10.1111/jocd.12304
- Richter M, Rossello-Mora R. 2009. Shifting the genomic gold standard for the prokaryotic species definition. Proc. Natl. Acad. Sci. USA 106: 19126-19131. https://doi.org/10.1073/pnas.0906412106
- Volpiano CG, Sant'Anna FH, da Mota FF, Sangal V, Sutchliffe I, Munusamy M, et al. 2021. Proposal of Carbonactinosporaceae fam. nov. within the class Actinomycetia. Reclassification of Streptomyces thermoautotrophicus as Carbonactinospora thermoautotrophica gen. nov., comb. nov. Syst. Appl. Microbiol. 44: 126223.
- Gonzalez-Burgos E, Gomez-Serranillos MP. 2012. Terpene compounds in nature: a review of their potential antioxidant activity. Curr. Med. Chem. 19: 5319-5341. https://doi.org/10.2174/092986712803833335