DOI QR코드

DOI QR Code

Forced vibrations of an elastic circular plate supported by unilateral edge lateral springs

  • Celep, Zekai (Department of Civil Engineering, Faculty of Engineering, Fatih Sultan Mehmet Vakif University) ;
  • Gencoglu, Mustafa (Department of Civil Engineering, Faculty of Civil Engineering, Istanbul Technical University)
  • Received : 2021.03.25
  • Accepted : 2022.05.24
  • Published : 2022.08.25

Abstract

The present study deals with forced vibrations of an elastic circular plate supported along its circular edge by unilateral elastic springs. The plate is assumed to be subjected to a uniformly distributed and a concentrated load. Under the combination of these loads, equations of motion are explicitly derived for static and dynamic response analyses by assuming a series of the displacement functions of time and other unknown parameters which are to be determined by employing Lagrangian functional. The approximate solution is sought by applying the Lagrange equations of motions by using the potential energy of the external forces that includes the contributions of the edge forces and the external moments, i.e., those of the effects of the boundary condition to the analysis. For the numerical treatment of the problem in the time domain, the linear acceleration procedure is adopted. The tensionless character of the support is taken into account by using an iterative process and, the coordinate functions for the displacement field are selected to partially fulfill the boundary conditions so that an acceptable approximation can be achieved faster. Numerical results are presented in the figures focusing on the nonlinearity of the problem due to the plate lift-off from the unilateral springs at the edge support.

Keywords

References

  1. Attar, M., Karrech, A. and Regenauer-Lieb, K. (2016), "Non-linear analysis of beam-like structures on unilateral foundations: A lattice spring model", Int. J. Solid. Struct., 88-89, 192-214. https://doi.org/10.1016/j.ijsolstr.2016.03.007.
  2. Bhattiprolu, U., Bajaj, A.K. and Davies, P. (2013), "An efficient solution methodology to study the response of a beam on viscoelastic and nonlinear unilateral foundation: Static response", Int. J. Solid. Struct., 50, 2328-2339. https://doi.org/10.1016/j.ijsolstr.2013.03.014.
  3. Bhattiprolu, U., Bajaj, A.K. and Davies, P. (2016), "Periodic response predictions of beams on nonlinear and viscoelastic unilateral foundations using incremental harmonic balance method", Int. J. Solid. Struct., 99, 28-39. https://doi.org/10.1016/j.ijsolstr.2016.08.009.
  4. Bhattiprolu, U., Davies, P. and Bajaj, A.K. (2014), "Static and dynamic response of beams on nonlinear viscoelastic unilateral foundations: A multimode approach", J. Vib. Acoust., 136, 031002. https://doi.org/10.1115/1.4026435.
  5. Celep, Z. (1988), "Circular plate on tensionless Winkler foundation", J. Eng. Mech., 114(10), 1723-1739. https://doi.org/10.1061/(ASCE)0733-9399(1988)114:10(1723).
  6. Celep, Z. (1992), "Harmonic and seismic responses of a platecolumn system on a tensionless Winkler foundation", J. Sound Vib., 155(1), 47-53. https://doi.org/10.1016/0022-460X(92)90644-D.
  7. Celep, Z. and Demir, F. (2007), "Symmetrically loaded beam on a two-parameter tensionless foundation", Struct. Eng. Mech., 27(5), 555-574. https://doi.org/10.12989/sem.2007.27.5.555.
  8. Celep, Z. and Gencoglu, M. (2003), "Forced vibrations of rigid circular plate on a tensionless Winkler edge support", J. Sound Vib., 263, 945-953. https://doi.org/10.1016/S0022-460X(02)01472-4.
  9. Celep, Z. and Guler, K. (2004), "Static and dynamic responses of a rigid circular plate on a tensionless Winkler foundation", J. Sound Vib., 276(1-2), 449-458. https://doi.org/10.1016/j.jsv.2003.10.062.
  10. Celep, Z. and Turhan, D. (1990), "Axisymmetric vibrations of circular plates on tensionless elastic foundations", J. Appl. Mech., ASME, 57(3), 677-681. https://doi.org/10.1115/1.2897076.
  11. Celep, Z., Guler, K. and Demir, F. (2011), "Response of a completely free beam on a tensionless Pasternak foundation subjected to dynamic load", Struct. Eng. Mech., 37(1), 61-77. https://doi.org/10.12989/sem.2011.37.1.061.
  12. Celep, Z., Turhan, D. and Al-Zaid, R.Z. (1988a), "Circular elastic plates on elastic unilateral edge supports", J. Appl. Mech., ASME, 55(3), 624-628. https://doi.org/10.1115/1.3125839.
  13. Celep, Z., Turhan, D. and Al-Zaid, R.Z. (1988b), "Contact between a circular plate and a tensionless edge support", Int. J. Mech. Sci., 30 (10), 733-741. https://doi.org/10.1016/0020-7403(88)90038-0.
  14. Dempsey, J.P., Keer, L.M., Patel, N.B. and Glasser, M.L. (1984), "Contact between plates and unilateral supports", J. Appl. Mech., ASME, 51, 324-328. https://doi.org/10.1115/1.3167620.
  15. Guler, K. and Celep, Z. (1995), "Static and dynamic responses of a circular plate on a tensionless elastic foundation", J. Sound Vib., 183(2), 185-195. https://doi.org/10.1006/jsvi.1995.0248.
  16. Guler, K. and Celep, Z. (2005), "Response of a rectangular platecolumn system on a tensionless Winkler foundation subjected to static and dynamic loads", Struct. Eng. Mech., 21(6) 699-712. https://doi.org/10.12989/sem.2005.21.6.699.
  17. Hong, T., Teng, J.G. and Luo, Y.F. (1999), "Axisymmetric shells and plates on tensionless elastic foundations", Int. J. Solid. Struct., 36, 5277-5300. https://doi.org/10.1016/S0020-7683(98)00228-5.
  18. Ioakimidis, N.I. (2016), "Derivation of conditions of complete contact for a beam on a tensionless Winkler elastic foundation with Mathematica", Mech. Res. Commun., 72, 64-73. https://doi.org/10.1016/j.mechrescom.2016.01.007.
  19. Kamiya, N. (1977), "Circular plates resting on bimodulus and notension foundation", J. Eng. Mech. Div., 1003, 1161-1164. https://doi.org/10.1061/JMCEA3.0002303.
  20. Kerr, A.D. (1964), "Elastic and viscoelastic foundation models", J. Appl. Mech., ASME, 31, 491-498. https://doi.org/10.1115/1.3629667.
  21. Kerr, A.D. (1976), "On the derivations of well-posed boundary value problems in structural mechanics", Int. J. Solid. Struct., 12(1), 1-11. https://doi.org/10.1016/0020-7683(76)90069-X.
  22. Kerr, A.D. and Soicher, N.E. (1996), "A peculiar set of problems in linear structural mechanics", Int. J. Solid. Struct., 33(6), 899-911. https://doi.org/10.1016/0020-7683(95)00078-O.
  23. Leissa, A.W. (1969), Vibration of Plates, NASA SP-160.
  24. Lezgy-Nazargah, M. (2016), "A high-performance parametrized mixed finite element model for bending and vibration analyses of thick plates", Acta Mechanica, 227, 3429-3450. https://doi.org/10.1007/s00707-016-1676-4.
  25. Lezgy-Nazargah, M. and Cheraghi N. (2015), "An exact Peano Series solution for bending analysis of imperfect layered FG neutral magneto-electro-elastic plates resting on elastic foundations", Mech. Adv. Mater. Struct., 24(3), 183-199. https://doi.org/10.1080/15376494.2015.1124951.
  26. Lezgy-Nazargah, M. and Meshkani, Z. (2018), "An efficient partial mixed finite element model for static and free vibration analyses of FGM plates rested on two-parameter elastic foundation", Struct. Eng. Mech., 66(5), 665-676. https://doi.org/10.12989/sem.2018.66.5.665.
  27. Lezgy-Nazargah, M., Mamazizi, A. and Khosravi, H. (2022), "Analysis of shallow footings rested on tensionless foundations using a mixed finite element model", Struct. Eng. Mech., 81(3), 379-394. https://doi.org/10.12989/sem.2022.81.3.379.
  28. Liu, Y., Qin, Z. and Chu, F. (2021), "Nonlinear dynamic responses of sandwich functionally graded porous cylindrical shells embedded in elastic media under 1:1 internal resonance", Appl. Math. Mech., 42(6), 805-818. https://doi.org/10.1007/s10483-021-2740-7.
  29. Liu, Y., Qin, Z. and Chu, F. (2021), "Nonlinear forced vibrations of FGM sandwich cylindrical shells with porosities on an elastic substrate", Nonlin. Dyn., 104, 1007-1021. https://doi.org/10.1007/s11071-021-06358-7.
  30. Liu, Y., Qin, Z. and Chu, F. (2021), "Nonlinear forced vibrations of functionally graded piezoelectric cylindrical shells under electric-thermo-mechanical loads", Int. J. Mech. Sci., 201, 106474. https://doi.org/10.1016/j.ijmecsci.2021.106474.
  31. Liu, Y., Qin, Z. and Chu, F. (2022), "Investigation of magnetoelectro-thermo-mechanical loads on nonlinear forced vibrations of composite cylindrical shells", Commun. Nonlin. Sci. Numer. Simul., 107, 106146. https://doi.org/10.1016/j.cnsns.2021.106146.
  32. MATLAB and Statistics Toolbox Release (2012), The MathWorks, Inc., Natick, Massachusetts, United States.
  33. McLachlan, N.W. (1955), Bessel Functions for Engineers, Clarendon Press, Oxford.
  34. SAP2000 (1988), Integrated Software for Structural Analysis and Design V20, Computers and Structures Inc., Berkeley, California.
  35. Silva, A.R.D., Silveira, R.A.M. and Goncalves, P.B. (2001), "Numerical methods for analysis of plates on tensionless elastic foundations", Int. J. Solid. Struct., 38, 2083-2100. https://doi.org/10.1016/S0020-7683(00)00154-2.
  36. Villaggio, P. (1983), "A free boundary value problem in plate theory", J. Appl. Mech., ASME, 50, 297-302. https://doi.org/10.1115/1.3167035.
  37. Wang, Y.H., Tham, L.G. and Cheung, Y.K. (2005), "Beams and plates on elastic foundations: A review", Prog. Struct. Eng. Mater., 7, 174-182. https://doi.org/10.1002/pse.202.
  38. Weitsman, Y. (1970), "On foundations that react in compression only", J. Appl. Mech., ASME, 37, 1019-1030. https://doi.org/10.1115/1.3408653.
  39. Zhang, B., Chen, F., Wang, Q. and Lin, L. (2020), "Analytical model of buried beams on a tensionless foundation subjected to differential settlement", Appl. Math. Model., 87, 269-286. https://doi.org/10.1016/j.apm.2020.06.004.
  40. Zhang, Y. and Liu, X. (2019), "Response of an infinite beam resting on the tensionless Winkler foundation subjected to an axial and a transverse concentrated loads", Eur. J. Mech.-A/Solid., 77, 103819. https://doi.org/10.1016/j.euromechsol.2019.103819.
  41. Zhang, Y. and Murph, K.D. (2004), "Response of a finite beam in contact with a tensionless foundation under symmetric and asymmetric loading", Int. J. Solid. Struct., 41, 6745-6758. https://doi.org/10.1016/j.ijsolstr.2004.05.028.
  42. Zhang, Y., Liu, X. and Wei, Y (2018), "Response of an infinite beam on a bilinear elastic foundation: Bridging the gap between the Winkler and tensionless foundation models", Eur. J. Mech.-A/Solid., 71, 394-403. https://doi.org/10.1016/j.euromechsol.2018.06.006.