DOI QR코드

DOI QR Code

Scavenger receptor class F member 2 (SCARF2) as a novel therapeutic target in glioblastoma

  • Kim, Chaeyeong (Department of Pharmacology, College of Medicine, Chungnam National University) ;
  • Kong, Gyeyeong (Department of Pharmacology, College of Medicine, Chungnam National University) ;
  • Lee, Hyunji (Department of Pharmacology, College of Medicine, Chungnam National University) ;
  • Tran, Quangdon (Department of Pharmacology, College of Medicine, Chungnam National University) ;
  • Vo, Thuy‑Trang T. (Department of Pharmacology, College of Medicine, Chungnam National University) ;
  • Kwon, So Hee (College of Pharmacy, Yonsei Institute of Pharmaceutical Sciences, Yonsei University) ;
  • Park, Jisoo (Mitos Institute, Mitos Therapeutics Inc) ;
  • Kim, Seon‑Hwan (Department of Neurosurgery, Institute for Cancer Research, College of Medicine, Chungnam National University) ;
  • Park, Jongsun (Department of Pharmacology, College of Medicine, Chungnam National University)
  • 투고 : 2022.01.21
  • 심사 : 2022.02.16
  • 발행 : 2022.04.15

초록

Scavenger receptor class F member 2 (SCARF2) is expressed by endothelial cells with very large cytoplasmic domains and is the second isotype, also known as scavenger receptor expressed by endothelial cells 2 (SREC-2). SREC-1 plays an important role in the binding and endocytosis of various endogenous and exogenous ligands. Many studies have been carried out on modified low-density lipoprotein internalization activity, but there have been few studies on SCARF2. Higher expression of SCARF2 has been found in glioblastoma (GBM) than normal brain tissue. Through analysis of The Cancer Genome Atlas database, it was confirmed that SCARF2 is widely expressed in GBM, and increased SCARF2 expression correlated with a poor prognosis in patients with glioma. The results of this study showed that the expression of SCARF2 is increased in GBM cell lines and patients, suggesting that SCARF2 may be a potential diagnostic marker and therapeutic molecule for cancers including glioma.

키워드

과제정보

This work was financially supported by a research scholarship of Chungnam National University (2019) and by the National Research Foundation of Korea (NRF) grant funded by the Korea Government (MEST) (NRF-2021R1A2C1008492, NRF-2020R1F1A1049801, NRF-2021R1C1C200845611). The English in this document has been checked by at least two professional editors, both native speakers of English. For a certifcate, please see: http://www.textcheck.com/certifcate/m9vAFm.

참고문헌

  1. Omoruyi SI et al (2020) Exploitation of a novel phenothiazine derivative for its anti-cancer activities in malignant glioblastoma. Apoptosis 25:261-274. https://doi.org/10.1007/s10495-020-01594-5
  2. Rego GNA et al (2020) Therapeutic efficiency of multiple applications of magnetic hyperthermia technique in glioblastoma using aminosilane coated iron oxide nanoparticles: in vitro and in vivo study. Int J Mol Sci. https://doi.org/10.3390/ijms21030958
  3. Hanif F et al (2017) Glioblastoma multiforme: a review of its epidemiology and pathogenesis through clinical presentation and treatment. Asian Pac J Cancer Prev 18:3-9. https://doi.org/10.22034/APJCP.2017.18.1.3
  4. Tamimi AF, Juweid M (2017) Epidemiology and outcome of glioblastoma. In: De Vleeschouwer S (ed) Glioblastoma. AU, Brisbane. https://doi.org/10.15586/codon.glioblastoma.2017.ch8
  5. Felsberg J et al (2017) Epidermal growth factor receptor variant III (EGFRvIII) positivity in EGFR-amplified glioblastomas: prognostic role and comparison between primary and recurrent tumors. Clin Cancer Res 23:6846-6855. https://doi.org/10.1158/1078-0432.CCR-17-0890
  6. Paraskevakou G et al (2007) Epidermal growth factor receptor (EGFR)-retargeted measles virus strains effectively target EGFRor EGFRvIII expressing gliomas. Mol Ther 15:677-686. https://doi.org/10.1038/sj.mt.6300105
  7. Verhaak RG et al (2010) Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 17:98-110. https://doi.org/10.1016/j.ccr.2009.12.020
  8. Taylor TE, Furnari FB, Cavenee WK (2012) Targeting EGFR for treatment of glioblastoma: molecular basis to overcome resistance. Curr Cancer Drug Targets 12:197-209. https://doi.org/10.2174/156800912799277557
  9. Nishikawa R et al (1994) A mutant epidermal growth factor receptor common in human glioma confers enhanced tumorigenicity. Proc Natl Acad Sci U S A 91:7727-7731. https://doi.org/10.1073/pnas.91.16.7727
  10. Schmidt MHH et al (2003) Epidermal growth factor receptor signaling intensity determines intracellular protein interactions, ubiquitination, and internalization. Proc Natl Acad Sci U S A 100:6505-6510. https://doi.org/10.1073/pnas.1031790100
  11. Huang HS et al (1997) The enhanced tumorigenic activity of a mutant epidermal growth factor receptor common in human cancers is mediated by threshold levels of constitutive tyrosine phosphorylation and unattenuated signaling. J Biol Chem 272:2927-2935. https://doi.org/10.1074/jbc.272.5.2927
  12. Brennan CW et al (2013) The somatic genomic landscape of glioblastoma. Cell 155:462-477. https://doi.org/10.1016/j.cell.2013.09.034
  13. Furnari FB et al (2015) Heterogeneity of epidermal growth factor receptor signalling networks in glioblastoma. Nat Rev Cancer 15:302-310. https://doi.org/10.1038/nrc3918
  14. Guo G et al (2015) Ligand-Independent EGFR Signaling. Cancer Res 75:3436-3441. https://doi.org/10.1158/0008-5472.CAN-15-0989
  15. Xu H et al (2017) Epidermal growth factor receptor in glioblastoma. Oncol Lett 14:512-516. https://doi.org/10.3892/ol.2017.6221
  16. Ohgaki H, Kleihues P (2007) Genetic pathways to primary and secondary glioblastoma. Am J Pathol 170:1445-1453. https://doi.org/10.2353/ajpath.2007.070011
  17. Cantanhede IG, de Oliveira JRM (2017) PDGF family expression in glioblastoma multiforme: data compilation from ivy glioblastoma atlas project database. Sci Rep 7:15271. https://doi.org/10.1038/s41598-017-15045-w
  18. Westermark B (2014) Platelet-derived growth factor in glioblastoma-driver or biomarker? Ups J Med Sci 119:298-305. https://doi.org/10.3109/03009734.2014.970304
  19. Katsigiannis S et al (2021) MGMT-positive vs MGMT-negative patients with glioblastoma: identification of prognostic factors and resection threshold. Neurosurgery 88:E323-E329. https://doi.org/10.1093/neuros/nyaa562
  20. Han S et al (2020) IDH mutation in glioma: molecular mechanisms and potential therapeutic targets. Br J Cancer 122:1580-1589. https://doi.org/10.1038/s41416-020-0814-x
  21. Szopa W et al (2017) Diagnostic and therapeutic biomarkers in glioblastoma: current status and future perspectives. Biomed Res Int 2017:8013575. https://doi.org/10.1155/2017/8013575
  22. Ishii J et al (2002) SREC-II, a new member of the scavenger receptor type F family, trans-interacts with SREC-I through its extracellular domain. J Biol Chem 277:39696-39702. https://doi.org/10.1074/jbc.M206140200
  23. Adachi H et al (1997) Expression cloning of a novel scavenger receptor from human endothelial cells. J Biol Chem 272:31217-31220. https://doi.org/10.1074/jbc.272.50.31217
  24. PrabhuDas MR et al (2017) A consensus definitive classification of scavenger receptors and their roles in health and disease. J Immunol 198:3775-3789. https://doi.org/10.4049/jimmu nol.1700373
  25. Patten DA (2018) SCARF1: a multifaceted, yet largely understudied, scavenger receptor. Inflamm Res 67:627-632. https://doi.org/10.1007/s00011-018-1154-7
  26. Bedeschi MF et al (2010) Unmasking of a recessive SCARF2 mutation by a 22q1112 de novo deletion in a patient with Van den Ende-Gupta syndrome. Mol Syndromol 1:239-245. https://doi.org/10.1159/000328135
  27. Al-Qattan MM et al (2018) Inclusion of joint laxity, recurrent patellar dislocation, and short distal ulnae as a feature of Van Den Ende-Gupta syndrome: a case report. BMC Med Genet 19:18. https://doi.org/10.1186/s12881-018-0531-y
  28. van den Ende JJ et al (1992) Marden-Walker-like syndrome without psychomotor retardation: report of a Brazilian girl born to consanguineous parents. Am J Med Genet 42:467-469. https://doi.org/10.1002/ajmg.1320420411
  29. Leal GF, Silva EO (2009) van den Ende-Gupta syndrome: evidence for genetic heterogeneity. Am J Med Genet A 149A:1293-1295. https://doi.org/10.1002/ajmg.a.32871
  30. Phadke SR, Gulati R, Agarwal SS (1998) Further delineation of a new (Van Den Ende-Gupta) syndrome of blepharophimosis contractural arachnodactyly, and characteristic face. Am J Med Genet 77:16-18. https://doi.org/10.1002/(sici)1096-8628(19980428)77:1%3c16::aid-ajmg4%3e3.0.co;2-j
  31. Guerra D, Sanchez O, Richieri-Costa A (2005) van den Ende-Gupta syndrome of blepharophimosis, arachnodactyly, and congenital contractures. Am J Med Genet A 136A:377-380. https://doi.org/10.1002/ajmg.a.30665
  32. Carr CW et al (2007) Van den Ende-Gupta syndrome: laryngeal abnormalities in two siblings. Am J Med Genet A 143A:2706-2711. https://doi.org/10.1002/ajmg.a.32007
  33. Anastasio N et al (2010) Mutations in SCARF2 are responsible for Van Den Ende-Gupta syndrome. Am J Hum Genet 87:553-559. https://doi.org/10.1016/j.ajhg.2010.09.005
  34. Lin Y, Xu J, Lan H (2019) Tumor-associated macrophages in tumor metastasis: biological roles and clinical therapeutic applications. J Hematol Oncol 12:76. https://doi.org/10.1186/s13045-019-0760-3
  35. Muller Bark J et al (2020) Circulating biomarkers in patients with glioblastoma. Br J Cancer 122:295-305. https://doi.org/10.1038/s41416-019-0603-6
  36. Cramer SW, Chen CC (2019) Photodynamic Therapy for the Treatment of Glioblastoma. Front Surg 6:81. https://doi.org/10.3389/fsurg.2019.00081
  37. Fernandes C et al (2017) Current standards of care in glioblastoma therapy. In: De Vleeschouwer S (ed) Glioblastoma. AU, Brisbane. https://doi.org/10.15586/codon.glioblastoma.2017.ch11
  38. Ammari S et al (2021) A predictive clinical-radiomics nomogram for survival prediction of glioblastoma using MRI. Diagnostics (Basel). https://doi.org/10.3390/diagnostics11112043
  39. Kalita O et al (2021) The influence of gene aberrations on survival in resected IDH wildtype glioblastoma patients: a singleinstitution study. Curr Oncol 28:1280-1293. https://doi.org/10.3390/curroncol28020122
  40. Kaspera W et al (2013) Reoperations of patients with low-grade gliomas in eloquent or near eloquent brain areas. Neurol Neurochir Pol 47:116-125. https://doi.org/10.5114/ninp.2013.34399
  41. Majchrzak K et al (2012) The assessment of prognostic factors in surgical treatment of low-grade gliomas: a prospective study. Clin Neurol Neurosurg 114:1135-1144. https://doi.org/10.1016/j.clineuro.2012.02.054
  42. Wang Z et al (2021) Treatment of MGMT promoter unmethylated glioblastoma with PD-1 inhibitor combined with anti-angiogenesis and epidermal growth factor receptor tyrosine kinase inhibitor: a case report. Ann Transl Med 9:1508. https://doi.org/10.21037/atm-21-4625
  43. Tunthanathip T et al (2021) Prognostic impact of the combination of MGMT methylation and TERT promoter mutation in glioblastoma. J Neurosci Rural Pract 12:694-703. https://doi.org/10.1055/s-0041-17358 21
  44. Vengoji R et al (2021) Differential gene expression-based connectivity mapping identified novel drug candidate and improved Temozolomide efficacy for Glioblastoma. J Exp Clin Cancer Res 40:335. https://doi.org/10.1186/s13046-021-02135-x
  45. Lee SY (2016) Temozolomide resistance in glioblastoma multiforme. Genes Dis 3:198-210. https://doi.org/10.1016/j.gendis.2016.04.007
  46. Gregucci F et al (2021) Poor-prognosis patients affected by glioblastoma: retrospective study of hypofractionated radiotherapy with simultaneous integrated boost and concurrent/adjuvant temozolomide. J Pers Med. https://doi.org/10.3390/jpm11 111145
  47. Ding Y et al (2021) Apcin inhibits the growth and invasion of glioblastoma cells and improves glioma sensitivity to temozolomide. Bioengineered 12:10791-10798. https://doi.org/10.1080/21655979.2021.2003927
  48. Wicker-Planquart C et al (2021) Insights into the ligand binding specificity of SREC-II (scavenger receptor expressed by endothelial cells). FEBS Open Bio 11:2693-2704. https://doi.org/10.1002/2211-5463.13260
  49. Berwin B et al (2004) SREC-I, a type F scavenger receptor, is an endocytic receptor for calreticulin. J Biol Chem 279:51250-51257. https://doi.org/10.1074/jbc.M406202200
  50. Schweitzer DN et al (2003) van den Ende-Gupta syndrome of blepharophimosis, arachnodactyly, and congenital contractures: clinical delineation and recurrence in brothers. Am J Med Genet A 118A:267-273. https://doi.org/10.1002/ajmg.a.10143
  51. Nation JB et al (2021) Combining algorithms to find signatures that predict risk in early-stage stomach cancer. J Comput Biol 28:985-1006. https://doi.org/10.1089/cmb.2020.0568
  52. Zhao J et al (2013) Genome-wide identification of Epstein-Barr virus-driven promoter methylation profiles of human genes in gastric cancer cells. Cancer 119:304-312. https://doi.org/10.1002/cncr.27724
  53. Yegnasubramanian S et al (2011) Chromosome-wide mapping of DNA methylation patterns in normal and malignant prostate cells reveals pervasive methylation of gene-associated and conserved intergenic sequences. BMC Genomics 12:313. https://doi.org/10.1186/1471-2164-12-313
  54. Facciponte JG, Wang XY, Subjeck JR (2007) Hsp110 and Grp170, members of the Hsp70 superfamily, bind to scavenger receptor-A and scavenger receptor expressed by endothelial cells-I. Eur J Immunol 37:2268-2279. https://doi.org/10.1002/eji.200737127