DOI QR코드

DOI QR Code

In utero exposure to electronic-cigarette aerosols decreases lung fibrillar collagen content, increases Newtonian resistance and induces sex-specific molecular signatures in neonatal mice

  • Cahill, Kerin M. (Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University) ;
  • Gartia, Manas R. (Department of Mechanical and Industrial Engineering, Louisiana State University) ;
  • Sahu, Sushant (Department of Chemistry, University of Louisiana at Lafayette) ;
  • Bergeron, Sarah R. (Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University) ;
  • Hefernan, Linda M. (Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University) ;
  • Paulsen, Daniel B. (Department of Pathobiological Sciences, School of Veterinary Medicine, Louisiana State University) ;
  • Penn, Arthur L. (Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University) ;
  • Noel, Alexandra (Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University)
  • 투고 : 2021.05.18
  • 심사 : 2021.08.25
  • 발행 : 2022.04.15

초록

Approximately 7% of pregnant women in the United States use electronic-cigarette (e-cig) devices during pregnancy. There is, however, no scientific evidence to support e-cig use as being 'safe' during pregnancy. Little is known about the effects of fetal exposures to e-cig aerosols on lung alveologenesis. In the present study, we tested the hypothesis that in utero exposure to e-cig aerosol impairs lung alveologenesis and pulmonary function in neonates. Pregnant BALB/c mice were exposed 2 h a day for 20 consecutive days during gestation to either filtered air or cinnamon-favored e-cig aerosol (36 mg/ mL of nicotine). Lung tissue was collected in offspring during lung alveologenesis on postnatal day (PND) 5 and PND11. Lung function was measured at PND11. Exposure to e-cig aerosol in utero led to a significant decrease in body weights at birth which was sustained through PND5. At PND5, in utero e-cig exposures dysregulated genes related to Wnt signaling and epigenetic modifcations in both females (~ 120 genes) and males (40 genes). These alterations were accompanied by reduced lung fibrillar collagen content at PND5-a time point when collagen content is close to its peak to support alveoli formation. In utero exposure to e-cig aerosol also increased the Newtonian resistance of offspring at PND11, suggesting a narrowing of the conducting airways. At PND11, in females, transcriptomic dysregulation associated with epigenetic alterations was sustained (17 genes), while WNT signaling dysregulation was largely resolved (10 genes). In males, at PND11, the expression of only 4 genes associated with epigenetics was dysregulated, while 16 Wnt related-genes were altered. These data demonstrate that in utero exposures to cinnamon-favored e-cig aerosols alter lung structure and function and induce sex-specific molecular signatures during lung alveologenesis in neonatal mice. This may reflect epigenetic programming affecting lung disease development later in life.

키워드

과제정보

The authors thank Mr. William M. Selig of the Louisiana State University, School of Veterinary Medicine for excellent technical assistance with the e-cig exposure system.

참고문헌

  1. Centers for Disease Control and Prevention (CDC). Cigarette smoking and electronic cigarette use. https://www.cdc.gov/nchs/fastats/smoking.htm. Accessed 18 Feb 2021
  2. US Department of Health and Human Services (2016) Surgeon general's report: E-cigarette use among youth and young adults. A report of the surgeon general. U.S. Department of Health and Human Services Centers for Disease Control and Prevention National Center for Chronic Disease Prevention and Health Promotion Office on Smoking and Health, Atlanta, GA. https://www.cdc.gov/tobacco/data_statistics/sgr/e-cigarettes/index.htm#report
  3. Kurti AN, Bunn JY, Villanti AC, Stanton CA, Redner R, Lopez AA, Gaalema DE, Doogan NJ, Cepeda-Benito A, Roberts ME, Phillips JK, Quisenberry AJ, Keith DR, Higgins ST (2018) Patterns of single and multiple tobacco product use among US women of reproductive age. Nicotine Tob Res 20:S71-S80. https://doi.org/10.1093/ntr/nty024
  4. LeBouf RF, Burns DA, Ranpara A, Attfield K, Zwack L, Stefaniak AB (2018) Headspace analysis for screening of volatile organic compound profiles of electronic juice bulk material. Anal Bioanal Chem 410:5951-5960. https://doi.org/10.1007/s00216-018-1215-3
  5. Kosmider L, Sobczak A, Fik M, Knysak J, Zaciera M, Kurek J, Goniewicz ML (2014) Carbonyl compounds in electronic cigarette vapors: effects of nicotine solvent and battery output voltage. Nicotine Tob Res 10:1319-1326. https://doi.org/10.1093/ntr/ntu078
  6. American Lung Association (2021) Formaldehyde. https://www.lung.org/clean-air/at-home/indoor-air-pollutants/formaldehyde
  7. Chen H, Li G, Chan YL, Chapman DG, Sukjamnong S, Nguyen T, Annissa T, McGrath KC, Sharma P, Oliver BG (2018) Maternal E-cigarette exposure in mice alters DNA methylation and lung cytokine expression in offspring. Am J Respir Cell Mol Biol 58:366-377. https://doi.org/10.1165/rcmb.2017-0206RC
  8. Wetendorf M, Randall LT, Lemma MT, Hurr SH, Pawlak JB, Tarran R, Doerschuk CM, Caron KM (2019) E-Cigarette exposure delays implantation and causes reduced weight gain in female offspring exposed in utero. J Endocr Soc 3:1907-1916. https://doi.org/10.1210/js.2019-00216
  9. Orzabal M, Ramadoss J (2019) Impact of electronic cigarette aerosols on pregnancy and early development. Curr Opin Toxicol 14:14-20. https://doi.org/10.1016/j.cotox.2019.05.001
  10. McGrath-Morrow SA, Hayashi M, Aherrera A, Lopez A, Malinina A, Collaco JM, Neptune E, Klein JD, Winickoff JP, Breysse P, Lazarus P, Chen G (2015) The effects of electronic cigarette emissions on systemic cotinine levels, weight and postnatal lung growth in neonatal mice. PLoS ONE 10:e0118344. https://doi.org/10.1371/journal.pone.0118344
  11. Noel A, Hansen S, Zaman A, Perveen Z, Pinkston R, Hossain E, Xiao R, Penn A (2020) In utero exposures to electronic-cigarette aerosols impair the Wnt signaling during mouse lung development. Am J Physiol Lung Cell Mol Physiol 318:L705-L722. https://doi.org/10.1152/ajplung.00408.2019
  12. Ladd-Acosta C, Shu C, Lee BK, Gidaya N, Singer A, Schieve LA, Schendel DE, Jones N, Daniels JL, Windham GC, Newschaffer CJ, Croen LA, Feinberg AP, Daniele Fallin M (2016) Presence of an epigenetic signature of prenatal cigarette smoke exposure in childhood. Environ Res 144:139-148. https://doi.org/10.1016/j.envres.2015.11.014
  13. Neophytou AM, Oh SS, Hu D, Huntsman S, Eng C, Rodriguez-Santana JR, Kumar R, Balmes JR, Eisen EA, Burchard EG (2019) In utero tobacco smoke exposure, DNA methylation, and asthma in Latino children. Environ Epidemiol 3:e048. https://doi.org/10.1097/EE9.0000000000000048
  14. Wiklund P, Karhunen V, Richmond RC, Parmar P, Rodriguez A, De Silva M, Wielscher M, Rezwan FI, Richardson TG, Veijola J, Herzig KH, Holloway JW, Relton CL, Sebert S, Jarvelin MR (2019) DNA methylation links prenatal smoking exposure to later life health outcomes in offspring. Clin Epigenetics 11:97. https://doi.org/10.1186/s13148-019-0683-4
  15. Tehranifar P, Wu HC, McDonald JA, Jasmine F, Santella RM, Gurvich I, Flom JD, Terry MB (2018) Maternal cigarette smoking during pregnancy and offspring DNA methylation in midlife. Epigenetics 13:129-134. https://doi.org/10.1080/15592294.2017.1325065
  16. Suter MA, Abramovici AR, Griffin E, Branch DW, Lane RH, Mastrobattista J, Aagaard K (2015) In utero nicotine exposure epigenetically alters fetal chromatin structure and differentially regulates transcription of the glucocorticoid receptor in a rat model. Birth Defects Res A Clin Mol Teratol 103:583-588. https://doi.org/10.1002/bdra.23395
  17. Chhabra D, Sharma S, Kho AT, Gaedigk R, Vyhlidal CA, Steven Leeder J, Morrow J, Carey VJ, Weiss ST, Tantisira KG, DeMeo DL (2014) Fetal lung and placental methylation is associated with in utero nicotine exposure. Epigenetics 11:1473-1484. https://doi.org/10.4161/15592294.2014.971593
  18. Li E (2002) Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev Genet 3:662-673. https://doi.org/10.1038/nrg887
  19. Handy DE, Castro R, Loscalzo J (2011) Epigenetic modifications: basic mechanisms and role in cardiovascular disease. Circulation 123:2145-2156. https://doi.org/10.1161/CIRCULATIONAHA.110.956839
  20. Wang Z, Schones DE, Zhao K (2009) Characterization of human epigenomes. Curr Opin Genet Dev 19:127-134. https://doi.org/10.1016/j.gde.2009.02.001
  21. Warburton D, El-Hashash A, Carraro G, Tiozzo C, Sala F, Rogers O, De Langhe S, Kemp PJ, Riccardi D, Torday J, Bellusci S, Shi W, Lubkin SR, Jesudason E (2010) Lung organogenesis. Curr Top Dev Biol 90:73-158. https://doi.org/10.1016/S0070-2153(10)90003-3
  22. Rodriguez-Castillo JA, Perez DB, Ntokou A, Seeger W, Morty RE, Ahlbrecht K (2018) Understanding alveolarization to induce lung regeneration. Respir Res 19:148. https://doi.org/10.1186/s12931-018-0837-5
  23. Chao CM, Moiseenko A, Zimmer KP, Bellusci S (2016) Alveologenesis: key cellular players and fibroblast growth factor 10 signaling. Mol Cell Pediatr 3:17. https://doi.org/10.1186/s40348-016-0045-7
  24. Frank DB, Peng T, Zepp JA, Snitow M, Vincent TL, Penkala IJ, Cui Z, Herriges MJ, Morley MP, Zhou S, Lu MM, Morrisey EE (2016) Emergence of a wave of wnt signaling that regulates lung alveologenesis by controlling epithelial self-renewal and differentiation. Cell Rep 17:2312-2325. https://doi.org/10.1016/j.celrep.2016.11.001
  25. Mund SI, Stampanoni M, Schittny JC (2008) Developmental alveolarization of the mouse lung. Dev Dyn 237:2108-2116. https://doi.org/10.1002/dvdy.21633
  26. Burri PH, Dbaly J, Weibel ER (1974) The postnatal growth of the rat lung. I. Morphometry. Anat Rec 178:711-730. https://doi.org/10.1002/ar.1091780405
  27. Amy RW, Bowes D, Burri PH, Haines J, Thurlbeck WM (1977) Postnatal growth of the mouse lung. J Anat 124:131-151
  28. Wang Y, Tang Z, Huang H, Li J, Wang Z, Yu Y, Zhang C, Li J, Dai H, Wang F, Cai T, Tang N (2018) Pulmonary alveolar type I cell population consists of two distinct subtypes that differ in cell fate. Proc Natl Acad Sci USA 115:2407-2412. https://doi.org/10.1073/pnas.1719474115
  29. Suter MA, Mastrobattista J, Sachs M, Aagaard K (2015) Is there evidence for potential harm of electronic cigarette use in pregnancy? Birth Defects Res A Clin Mol Teratol 103:186-195. https://doi.org/10.1002/bdra.23333
  30. Behar RZ, Luo W, Lin SC, Wang Y, Valle J, Pankow JF, Talbot P (2016) Distribution, quantification and toxicity of cinnamaldehyde in electronic cigarette refill fluids and aerosols. Tob Control 25:ii94-ii102. https://doi.org/10.1136/tobaccocontrol-2016-053224
  31. Morean ME, Kong G, Cavallo DA, Camenga DR, Krishnan-Sarin S (2016) Nicotine concentration of e-cigarettes used by adolescents. Drug Alcohol Depend 167:224-227. https://doi.org/10.1016/j.drugalcdep.2016.06.031
  32. Zare S, Nemati M, Zheng Y (2018) A systematic review of consumer preference for e-cigarette attributes: flavor, nicotine strength, and type. PLoS ONE 13:e0194145. https://doi.org/10.1371/journal.pone.0194145
  33. Goldenson NI, Leventhal AM, Stone MD, McConnell RS, Barrington-Trimis JL (2017) Associations of electronic cigarette nicotine concentration with subsequent cigarette smoking and vaping levels in adolescents. JAMA Pediatr 171:1192-1199. https://doi.org/10.1001/jamapediatrics.2017.3209
  34. Leventhal AM, Goldenson NI, Cho J, Kirkpatrick MG, McConnell RS, Stone MD, Pang RD, Audrain-McGovern J, Barrington-Trimis JL (2019) Flavored E-cigarette use and progression of vaping in adolescents. Pediatrics 144:e20190789. https://doi.org/10.1542/peds.2019-0789
  35. Noel A, Verret CM, Hasan F, Lomnicki S, Morse J, Robichaud A, Penn AL (2018) Generation of electronic cigarette aerosol by a third-generation machine-vaping device: application to toxicological studies. J Vis Exp 138:58095. https://doi.org/10.3791/58095
  36. Noel A, Hossain E, Perveen Z, Zaman H, Penn AL (2020) Sub-ohm vaping increases the levels of carbonyls, is cytotoxic, and alters gene expression in human bronchial epithelial cells exposed at the air-liquid interface. Respir Res 21:305. https://doi.org/10.1186/s12931-020-01571-1
  37. Livraghi A, Grubb BR, Hudson EJ, Wilkinson KJ, Sheehan JK, Mall MA, O'Neal WK, Boucher RC, Randell SH (2009) Airway and lung pathology due to mucosal surface dehydration in b-epithelial Na+ channel-overexpressing mice: role of TNF-a and IL-4Ra signaling, influence of neonatal development, and limited efficacy of glucocorticoid treatment. J Immunol 182:4357-4367. https://doi.org/10.4049/jimmunol.0802557
  38. Yu X, Li C (2019) Protective effects of propofol on experimental neonatal acute lung injury. Mol Med Rep 19:4507-4513. https://doi.org/10.3892/mmr.2019.10113
  39. Elsayed YN, Hinton M, Graham R, Dakshinamurti S (2020) Lung ultrasound predicts histological lung injury in a neonatal model of acute respiratory distress syndrome. Pediatr Pulmonol 55:2913-2923. https://doi.org/10.1002/ppul.24993
  40. Huang DW, Sherman BT, Lempicki RA (2009) Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nature Protoc 4:44-57. https://doi.org/10.1038/nprot.2008.211
  41. Huang DW, Sherman BT, Lempicki RA (2009) Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 37:1-13. https://doi.org/10.1093/nar/gkn923
  42. Mizikova I, Morty RE (2015) The extracellular matrix in bronchopulmonary dysplasia: target and source. Front Med (Lausanne) 2:91. https://doi.org/10.3389/fmed.2015.00091
  43. Kapaya M, D' Angelo DV, Tong VT et al (2019) Use of Electronic Vapor Products Before, During, and After Pregnancy Among Women with a Recent Live Birth-Oklahoma and Texas, 2015. MMWR Morb Mortal Wkly Rep 68:189-194. https://doi.org/10.15585/mmwr. mm680 8a1. https://www.cdc.gov/mmwr/volumes/68/wr/mm6808a1.htm
  44. Sin DD, Spier S, Svenson LW, Schopflocher DP, Senthilselvan A, Cowie RL, Man SF (2004) The relationship between birth weight and childhood asthma: a population-based cohort study. Arch Pediatr Adolesc Med 158:60-64. https://doi.org/10.1001/archpedi.158.1.60
  45. Su BH, Hu PH, Peng CT, Tsai CH (2000) Chronic lung disease in extremely low birth weight infants: a two-year retrospective analysis. Acta Paediatr Taiwan 41:75-79
  46. Walter EC, Ehlenbach WJ, Hotchkin DL, Chien JW, Koepsell TD (2009) Low birth weight and respiratory disease in adulthood: a population-based case-control study. Am J Respir Crit Care Med 180:176-180. https://doi.org/10.1164/rccm.200901-0046OC
  47. Guo H, Jin Y, Cheng Y, Leaderer B, Lin S, Holford TR, Qiu J, Zhang Y, Shi K, Zhu Y, Niu J, Bassig BA, Xu S, Zhang B, Li Y, Hu X, Chen Q, Zheng T (2014) Prenatal exposure to organochlorine pesticides and infant birth weight in China. Chemosphere 110:1-7. https://doi.org/10.1016/j.chemosphere.2014.02.017
  48. Ng SP, Silverstone AE, Lai ZW, Zelikoff JT (2006) Effects of prenatal exposure to cigarette smoke on offspring tumor susceptibility and associated immune mechanisms. Toxicol Sci 89:135-144. https://doi.org/10.1093/toxsci/kfj006
  49. Ko TJ, Tsai LY, Chu LC, Yeh SJ, Leung C, Chen CY, Chou HC, Tsao PN, Chen PC, Hsieh WS (2014) Parental smoking during pregnancy and its association with low birth weight, small for gestational age, and preterm birth offspring: a birth cohort study. Pediatr Neonatol 55:20-27. https://doi.org/10.1016/j.pedneo.2013.05.005
  50. Banderali G, Martelli A, Landi M, Moretti F, Betti F, Radaelli G, Lassandro C, Verduci E (2015) Short and long term health effects of parental tobacco smoking during pregnancy and lactation: a descriptive review. J Transl Med 13:327. https://doi.org/10.1186/s12967-015-0690-y
  51. Zhu M, Fitzgerald EF, Gelberg KH, Lin S, Druschel CM (2010) Maternal low-level lead exposure and fetal growth. Environ Health Perspect 118:1471-1475. https://doi.org/10.1289/ehp.0901561
  52. Dunigan-Russell K, Silverberg M, Lin VY, Li R, Wall SB, Li Q, Nicola T, Gotham J, Crowe DR, Vitiello PF, Agarwal A, Tipple TE (2020) Club cell heme oxygenase-1 deletion: effects in hyperoxia-exposed adult mice. Oxid Med Cell Longev 2020:2908271. https://doi.org/10.1155/2020/2908271
  53. Jobe AH, Ikegami M (2001) Antenatal infection/inflammation and postnatal lung maturation and injury. Respir Res 2:27-32. https://doi.org/10.1186/rr35
  54. Hoyler T, Klose CS, Souabni A, Turqueti-Neves A, Pfeifer D, Rawlins EL, Voehringer D, Busslinger M, Diefenbach A (2012) The transcription factor GATA-3 controls cell fate and maintenance of type 2 innate lymphoid cells. Immunity 37:634-648. https://doi.org/10.1016/j.immuni.2012.06.020
  55. Lordan JL, Bucchieri F, Richter A, Konstantinidis A, Holloway JW, Thornber M, Puddicombe SM, Buchanan D, Wilson SJ, Djukanovic R, Holgate ST, Davies DE (2002) Cooperative effects of Th2 cytokines and allergen on normal and asthmatic bronchial epithelial cells. J Immunol 169:407-414. https://doi.org/10.4049/jimmunol.169.1.407
  56. Nogueira-Silva C, Santos M, Baptista MJ, Moura RS, Correia-Pinto J (2006) IL-6 is constitutively expressed during lung morphogenesis and enhances fetal lung explant branching. Pediatr Res 60:530-536. https://doi.org/10.1203/01.pdr.0000242300.09427.3b
  57. Li H, Wang G, Lin S, Wang C, Zha J (2019) Loss of interleukin-6 enhances the inflammatory response associated with hyperoxiainduced lung injury in neonatal mice. Exp Ther Med 17:3101-3107. https://doi.org/10.3892/etm.2019.7315
  58. Shimoya K, Taniguchi T, Matsuzaki N, Moriyama A, Murata Y, Kitajima H, Fujimura M, Nakayama M (2000) Chorioamnionitis decreased incidence of respiratory distress syndrome by elevating fetal interleukin-6 serum concentration. Hum Reprod 15:2234-2240. https://doi.org/10.1093/humrep/15.10.2234
  59. Doumanov J, Jordnova A, Zlatkov K, Moskova-Doumanova V, Lalchev Z (2012) Investigation of IL-6 effects on SP-A expression in A549 lung cell line. Biotechnol Biotechnol Equip 26(sup1):96-99. https://doi.org/10.5504/50YRTIMB.2011.0018
  60. McGowan EC, Kostadinov S, McLean K, Gotsch F, Venturini D, Romero R, Laptook AR, Sharma S (2009) Placental IL-10 dysregulation and association with bronchopulmonary dysplasia risk. Pediatr Res 66:455-460. https://doi.org/10.1203/PDR.0b013e3181b3b0fa
  61. Surate Solaligue DE, Rodriguez-Castillo JA, Ahlbrecht K, Morty RE (2017) Recent advances in our understanding of the mechanisms of late lung development and bronchopulmonary dysplasia. Am J Physiol Lung Cell Mol Physiol 313:L1101-L1153. https://doi.org/10.1152/ajplung.00343.2017
  62. Dennery PA (2014) Heme oxygenase in neonatal lung injury and repair. Antioxid Redox Signal 21:1881-1892. https://doi.org/10.1089/ars.2013.5791
  63. Clapp PW, Pawlak EA, Lackey JT, Keating JE, Reeber SL, Glish GL, Jaspers I (2017) Flavored e-cigarette liquids and cinnamaldehyde impair respiratory innate immune cell function. Am J Physiol Lung Cell Mol Physiol 313:L278-L292. https://doi.org/10.1152/ajplung.00452.2016
  64. Das TK, Moutquin JM, Parent JG (1991) Effect of cigarette smoking on maternal airway function during pregnancy. Am J Obstet Gynecol 165:675-679. https://doi.org/10.1016/0002-9378(91)90307-d
  65. Dezateux C, Stocks J, Dundas I, Fletcher ME (1999) Impaired airway function and wheezing in infancy: the influence of maternal smoking and a genetic predisposition to asthma. Am J Respir Crit Care Med 159:403-410. https://doi.org/10.1164/ajrccm.159.2.9712029
  66. Moshammer H, Hoek G, Luttmann-Gibson H, Neuberger MA, Antova T, Gehring U, Hruba F, Pattenden S, Rudnai P, Slachtova H, Zlotkowska R, Fletcher T (2006) Parental smoking and lung function in children: an international study. Am J Respir Crit Care Med 173:1255-1263. https://doi.org/10.1164/rccm.200510-1552OC
  67. Sekhon HS, Keller JA, Benowitz NL, Spindel ER (2001) Prenatal nicotine exposure alters pulmonary function in newborn rhesus monkeys. Am J Respir Crit Care Med 164:989-994. https://doi.org/10.1164/ajrccm.164.6.2011097
  68. Spindel ER, McEvoy CT (2016) The oole of nicotine in the effects of maternal smoking during pregnancy on lung development and childhood respiratory disease. Implications for dangers of e-cigarettes. Am J Respir Crit Care Med 193:486-494. https://doi.org/10.1164/rccm.201510-2013PP
  69. Nicola T, Hagood JS, James ML, Macewen MW, Williams TA, Hewitt MM, Schwiebert L, Bulger A, Oparil S, Chen YF, Ambalavanan N (2009) Loss of thy-1 inhibits alveolar development in the newborn mouse lung. Am J Physiol Lung Cell Mol Physiol 296:L738-L750. https://doi.org/10.1152/ajplung.90603.2008
  70. Sekhon HS, Wright JL, Churg A (1994) Cigarette smoke causes rapid cell proliferation in small airways and associated pulmonary arteries. Am J Physiol 267:L557-L563. https://doi.org/10.1152/ajplung.1994.267.5.L557
  71. Wongtrakool C, Roser-Page S, Rivera HN, Roman J (2007) Nicotine alters lung branching morphogenesis through the alpha7 nicotinic acetylcholine receptor. Am J Physiol Lung Cell Mol Physiol 293:L611-L618. https://doi.org/10.1152/ajplung.00038.2007
  72. Wongtrakool C, Wang N, Hyde DM, Roman J, Spindel ER (2012) Prenatal nicotine exposure alters lung function and airway geometry through α7 nicotinic receptors. Am J Respir Cell Mol Biol 46:695-702. https://doi.org/10.1165/rcmb.2011-0028OC
  73. Sandberg KL, Pinkerton KE, Poole SD, Minton PA, Sundell HW (2011) Fetal nicotine exposure increases airway responsiveness and alters airway wall composition in young lambs. Respir Physiol Neurobiol 176:57-67. https://doi.org/10.1016/j.resp.2010.12.015
  74. Rehan VK, Liu J, Sakurai R, Torday JS (2013) Perinatal nicotineinduced transgenerational asthma. Am J Physiol Lung Cell Mol Physiol 305:L501-L507. https://doi.org/10.1152/ajplung.00078.2013
  75. Singh D (2017) Small airway disease in patients with chronic obstructive pulmonary disease. Tuberc Respir Dis (Seoul) 80:317-324. https://doi.org/10.4046/trd.2017.0080
  76. Hollams EM, de Klerk NH, Holt PG, Sly PD (2014) Persistent effects of maternal smoking during pregnancy on lung function and asthma in adolescents. Am J Respir Crit Care Med 189:401-407. https://doi.org/10.1164/rccm.201302-0323OC
  77. Drummond D, Baravalle-Einaudi M, Lezmi G, Vibhushan S, Franco-Montoya ML, Hadchouel A, Boczkowski J, Delacourt C (2017) Combined effects of in utero and adolescent tobacco smoke exposure on lung function in C57Bl/6J mice. Environ Health Perspect 125:392-399. https://doi.org/10.1289/EHP54
  78. Blacquiere MJ, Timens W, Melgert BN, Geerlings M, Postma DS, Hylkema MN (2009) Maternal smoking during pregnancy induces airway remodelling in mice offspring. Eur Respir J 33:1133-1140. https://doi.org/10.1183/09031936.00129608
  79. Gill SE, Pape MC, Leco KJ (2009) Absence of tissue inhibitor of metalloproteinases 3 disrupts alveologenesis in the mouse. Dev Growth Differ 51:17-24. https://doi.org/10.1111/j.1440-169X.2008.01075.x
  80. Zhou Y, Horowitz JC, Naba A, Ambalavanan N, Atabai K, Balestrini J, Bitterman PB, Corley RA, Ding BS, Engler AJ, Hansen KC, Hagood JS, Kheradmand F, Lin QS, Neptune E, Niklason L, Ortiz LA, Parks WC, Tschumperlin DJ, White ES, Chapman HA, Thannickal VJ (2018) Extracellular matrix in lung development, homeostasis and disease. Matrix Biol 73:77-104. https://doi.org/10.1016/j.matbio.2018.03.005
  81. Plosa E, Zent R (2017) Chapter 5-integrin regulation of the lung epithelium, lung epithelial biology in the pathogenesis of pulmonary disease. Academic Press, Cambridge, pp 77-89. https://doi.org/10.1016/B978-0-12-803809-3.00005-1
  82. Mostaco-Guidolin L, Rosin NL, Hackett TL (2017) Imaging collagen in scar tissue: developments in second harmonic generation microscopy for biomedical applications. Int J Mol Sci 18:1772. https://doi.org/10.3390/ijms18081772
  83. Luo Y, Li N, Chen H, Fernandez GE, Warburton D, Moats R, Mecham RP, Krenitsky D, Pryhuber GS, Shi W (2018) Spatial and temporal changes in extracellular elastin and laminin distribution during lung alveolar development. Sci Rep 8:8334. https://doi.org/10.1038/s41598-018-26673-1
  84. Wang Q, Sundar IK, Blum JL, Ratner JR, Lucas JH, Chuang TD, Wang Y, Liu J, Rehan VK, Zelikoff JT, Rahman I (2020) Prenatal exposure to electronic-cigarette aerosols leads to sex-dependent pulmonary extracellular-matrix remodeling and myogenesis in offspring mice. Am J Respir Cell Mol Biol 63:794-805. https://doi.org/10.1165/rcmb.2020-0036OC
  85. Perera F, Herbstman J (2011) Prenatal environmental exposures, epigenetics, and disease. Reprod Toxicol 31:363-373. https://doi.org/10.1016/j.reprotox.2010.12.055
  86. Joubert BR, Felix JF, Yousefi P, Bakulski KM, Just AC, Breton C, Reese SE, Markunas CA, Richmond RC, Xu CJ, Kupers LK, Oh SS, Hoyo C, Gruzieva O, Soderhall C, Salas LA, Baiz N, Zhang H, Lepeule J, Ruiz C, Ligthart S, Wang T, Taylor JA, Duijts L, Sharp GC, Jankipersadsing SA, Nilsen RM, Vaez A, Fallin MD, Hu D, Litonjua AA, Fuemmeler BF, Huen K, Kere J, Kull I, Munthe-Kaas MC, Gehring U, Bustamante M, Saurel-Coubizolles MJ, Quraishi BM, Ren J, Tost J, Gonzalez JR, Peters MJ, Haberg SE, Xu Z, van Meurs JB, Gaunt TR, Kerkhof M, Corpeleijn E, Feinberg AP, Eng C, Baccarelli AA, Benjamin Neelon SE, Bradman A, Merid SK, Bergstrom A, Herceg Z, Hernandez-Vargas H, Brunekreef B, Pinart M, Heude B, Ewart S, Yao J, Lemonnier N, Franco OH, Wu MC, Hofman A, McArdle W, Van der Vlies P, Falahi F, Gillman MW, Barcellos LF, Kumar A, Wickman M, Guerra S, Charles MA, Holloway J, Auffray C, Tiemeier HW, Smith GD, Postma D, Hivert MF, Eskenazi B, Vrijheid M, Arshad H, Anto JM, Dehghan A, Karmaus W, Annesi-Maesano I, Sunyer J, Ghantous A, Pershagen G, Holland N, Murphy SK, DeMeo DL, Burchard EG, Ladd-Acosta C, Snieder H, Nystad W, Koppelman GH, Relton CL, Jaddoe VW, Wilcox A, Melen E, London SJ (2016) DNA methylation in newborns and maternal smoking in pregnancy: genome-wide consortium meta-analysis. Am J Hum Genet 98:680-696. https://doi.org/10.1016/j.ajhg.2016.02.019
  87. Christensen S, Jaffar Z, Cole E, Porter V, Ferrini M, Postma B, Pinkerton KE, Yang M, Kim YJ, Montrose L, Roberts K, Holian A, Cho YH (2017) Prenatal environmental tobacco smoke exposure increases allergic asthma risk with methylation changes in mice. Environ Mol Mutagen 58:423-433. https://doi.org/10.1002/em.22097
  88. Li X, Zhang M, Pan X, Xu Z, Sun M (2017) "Three hits" hypothesis for developmental origins of health and diseases in view of cardiovascular abnormalities. Birth Defects Res 109:744-757. https://doi.org/10.1002/bdr2.1037
  89. Meyer KF, Krauss-Etschmann S, Kooistra W, Reinders-Luinge M, Timens W, Kobzik L, Plosch T, Hylkema MN (2017) Prenatal exposure to tobacco smoke sex dependently influences methylation and mRNA levels of the Igf axis in lungs of mouse offspring. Am J Physiol Lung Cell Mol Physiol 312:L542-L555. https://doi.org/10.1152/ajplung.00271.2016
  90. Rauschert S, Melton PE, Burdge G, Craig JM, Godfrey KM, Holbrook JD, Lillycrop K, Mori TA, Beilin LJ, Oddy WH, Pennell C, Huang RC (2019) Maternal smoking during pregnancy induces persistent epigenetic changes into adolescence, independent of postnatal smoke exposure and is associated with cardiometabolic risk. Front Genet 10:770. https://doi.org/10.3389/fgene.2019.00770
  91. Jolly MK, Ward C, Eapen MS, Myers S, Hallgren O, Levine H, Sohal SS (2018) Epithelial-mesenchymal transition, a spectrum of states: role in lung development, homeostasis, and disease. Dev Dyn 247:346-358. https://doi.org/10.1002/dvdy.24541
  92. Beurel E, Grieco SF, Jope RS (2015) Glycogen synthase kinase-3 (GSK3): regulation, actions, and diseases. Pharmacol Ther 148:114-131. https://doi.org/10.1016/j.pharmthera.2014.11.016
  93. Neal JW, Clipstone NA (2001) Glycogen synthase kinase-3 inhibits the DNA binding activity of NFATc. J Biol Chem 276:3666-3673. https://doi.org/10.1074/jbc.M004888200
  94. Lee PP, Fitzpatrick DR, Beard C, Jessup HK, Lehar S, Makar KW, Perez-Melgosa M, Sweetser MT, Schlissel MS, Nguyen S, Cherry SR, Tsai JH, Tucker SM, Weaver WM, Kelso A, Jaenisch R, Wilson CB (2001) A critical role for Dnmt1 and DNA methylation in T cell development, function, and survival. Immunity 15:763-774. https://doi.org/10.1016/s1074-7613(01)00227-8
  95. Eyring KR, Pedersen BS, Yang IV, Schwartz DA (2015) In utero cigarette smoke affects allergic airway disease but does not alter the lung methylome. PLoS ONE 10:e0144087. https://doi.org/10.1371/journal.pone.0144087
  96. Maeda Y, Dave V, Whitsett JA (2006) Transcriptional control of lung morphogenesis. Physiol Rev 87:219-244. https://doi.org/10.1152/physrev.00028.2006
  97. Dave V, Childs T, Xu Y, Ikegami M, Besnard V, Maeda Y, Wert SE, Neilson JR, Crabtree GR, Whitsett JA (2006) Calcineurin/Nfat signaling is required for perinatal lung maturation and function. J Clin Invest 116:2597-2609. https://doi.org/10.1172/JCI27331
  98. Burgstaller G, Oehrle B, Gerckens M, White ES, Schiller HB, Eickelberg O (2017) The instructive extracellular matrix of the lung: basic composition and alterations in chronic lung disease. Eur Respir J 50:1601805. https://doi.org/10.1183/13993003.01805-2016
  99. Sundar IK, Rahman I (2016) Gene expression profiling of epigenetic chromatin modification enzymes and histone marks by cigarette smoke: implications for COPD and lung cancer. Am J Physiol Lung Cell Mol Physiol 311:L1245-L1258. https://doi.org/10.1152/ajplung.00253.2016
  100. Takahashi K, Pavlidis S, Ng Kee Kwong F, Hoda U, Rossios C, Sun K, Loza M, Baribaud F, Chanez P, Fowler SJ, Horvath I, Montuschi P, Singer F, Musial J, Dahlen B, Dahlen SE, Krug N, Sandstrom T, Shaw DE, Lutter R, Bakke P, Fleming LJ, Howarth PH, Caruso M, Sousa AR, Corfield J, Auffray C, De Meulder B, Lefaudeux D, Djukanovic R, Sterk PJ, Guo Y, Adcock IM, Chung KF, on behalf of the U-BIOPRED study group (2018) Sputum proteomics and airway cell transcripts of current and ex-smokers with severe asthma in U-BIOPRED: an exploratory analysis. Eur Respir J 51:1702173. https://doi.org/10.1183/13993003.02173-2017
  101. Zwinderman MRH, de Weerd S, Dekker FJ (2019) Targeting HDAC complexes in asthma and COPD. Epigenomes 3:19. https://doi.org/10.3390/epigenomes3030019
  102. Stepaniants S, Wang IM, Boie Y, Mortimer J, Kennedy B, Elliott M, Hayashi S, Luo H, Wong J, Loy L, Coulter S, Roberts CJ, Hogg JC, Sin DD, O'Neill G, Crackower M, Morris M, Pare PD, Obeidat M (2014) Genes related to emphysema are enriched for ubiquitination pathways. BMC Pulm Med 14:187. https://doi.org/10.1186/1471-2466-14-187
  103. Ivorra C, Fraga MF, Bayon GF, Fernandez AF, Garcia-Vicent C, Chaves FJ, Redon J, Lurbe E (2015) DNA methylation patterns in newborns exposed to tobacco in utero. J Transl Med 13:25. https://doi.org/10.1186/s12967-015-0384-5
  104. Wang L, Yang J, Guo L, Uyeminami D, Dong H, Hammock BD, Pinkerton KE (2012) Use of a soluble epoxide hydrolase inhibitor in smoke-induced chronic obstructive pulmonary disease. Am J Respir Cell Mol Biol 46:614-622. https://doi.org/10.1165/rcmb.2011-0359OC
  105. Breton CV, Salam MT, Gilliland FD (2011) Heritability and role for the environment in DNA methylation in AXL receptor tyrosine kinase. Epigenetics 6:895-898. https://doi.org/10.4161/epi.6.7.15768
  106. Gao L, Millstein J, Siegmund KD, Dubeau L, Maguire R, Gilliland FD, Murphy SK, Hoyo C, Breton CV (2017) Epigenetic regulation of AXL and risk of childhood asthma symptoms. Clin Epigenetics 9:121. https://doi.org/10.1186/s13148-017-0421-8
  107. Fuseini H, Newcomb DC (2017) Mechanisms driving gender differences in asthma. Curr Allergy Asthma Rep 17:19. https://doi.org/10.1007/s11882-017-0686-1
  108. McEvoy CT, Spindel ER (2017) Pulmonary effects of maternal smoking on the fetus and child: effects on lung development, respiratory morbidities, and life long lung health. Paediatr Respir Rev 21:27-33. https://doi.org/10.1016/j.prrv.2016.08.005
  109. Wu P (2012) Maternal smoking during pregnancy and its effect on childhood asthma: understanding the puzzle. Am J Respir Crit Care Med 186:941-942. https://doi.org/10.1164/rccm.201209-1618ED
  110. Weitzman M, Gortmaker S, Walker DK, Sobol A (1990) Maternal smoking and childhood asthma. Pediatrics 85:505-511 https://doi.org/10.1542/peds.85.4.505
  111. Torday JS, Nielsen HC (1987) The sex difference in fetal lung surfactant production. Exp Lung Res 12:1-19. https://doi.org/10.3109/01902148709068811