DOI QR코드

DOI QR Code

Comparison of the cyclic fatigue resistance of One Curve, F6 Skytaper, Protaper Next, and Hyflex CM endodontic files

  • Received : 2021.06.21
  • Accepted : 2021.11.03
  • Published : 2022.05.31

Abstract

Objectives: This study compared the cyclic fatigue resistance of One Curve (C wire) and F6 Skytaper (conventional austenite nickel-titanium [NiTi]), and 2 instruments with thermos-mechanically treated NiTi: Protaper Next X2 (M wire) and Hyflex CM (CM wire). Materials and Methods: Ten new instruments of each group (size: 0.25 mm, 6% taper in the 3 mm tip region) were tested using a rotary bending machine with a 60° curvature angle and a 5 mm curvature radius, at room temperature. The number of cycles until fracture was recorded. The length of the fractured instruments was measured. The fracture surface of each fragment was examined with a scanning electron microscope (SEM). The data were analyzed using one-way analysis of variance and the post hoc Tukey test. The significance level was set at 0.05. Results: At 60°, One Curve, F6 Skytaper and Hyflex CM had significantly longer fatigue lives than Protaper Next X2 (p < 0.05). No statistically significant differences were found in the cyclic fatigue lives of One Curve, F6 Skytaper, and Hyflex CM (p > 0.05). SEM images of the fracture surfaces of the different instruments showed typical features of fatigue failure. Conclusions: Within the conditions of this study, at 60° and with a 5 mm curvature radius, the cyclic fatigue life of One Curve was not significantly different from those of F6 Skytaper and Hyflex CM. The cyclic fatigue lives of these 3 instruments were statistically significantly longer than that of Protaper Next.

Keywords

Acknowledgement

The authors thank Mathieu Dalla Corte and Guenole Huon for their collaboration in performing some manipulations, Mathilde Cabon for assistance with the statistical analysis, and the entire laboratory team.

References

  1. Neurohr AJ, Dunand DC. Shape-memory NiTi with two-dimensional networks of micro-channels. Acta Biomater 2011;7:1862-1872.
  2. Frotscher M, Kahleyss F, Simon T, Biermann D, Eggeler G. Achieving small structures in thin NiTi sheets for medical applications with water jet and micro machining: a comparison. J Mater Eng Perform 2011;20:776-782.
  3. Stoeckel D. Nitinol medical devices and implants. Minim Invasive Ther Allied Technol 2000;9:81-88. https://doi.org/10.3109/13645700009063054
  4. Oshida Y. Bioscience and bioengineering of titanium materials. 1st ed. Amsterdam, Holland: Elsevier; 2007.
  5. Thompson SA. An overview of nickel-titanium alloys used in dentistry. Int Endod J 2000;33:297-310. https://doi.org/10.1046/j.1365-2591.2000.00339.x
  6. Peters OA. Current challenges and concepts in the preparation of root canal systems: a review. J Endod 2004;30:559-567.
  7. Parashos P, Messer HH. Rotary NiTi instrument fracture and its consequences. J Endod 2006;32:1031-1043. https://doi.org/10.1016/j.joen.2006.06.008
  8. Capar ID, Arslan H. A review of instrumentation kinematics of engine-driven nickel-titanium instruments. Int Endod J 2016;49:119-135. https://doi.org/10.1111/iej.12432
  9. Yared G. Canal preparation using only one Ni-Ti rotary instrument: preliminary observations. Int Endod J 2008;41:339-344. https://doi.org/10.1111/j.1365-2591.2007.01351.x
  10. Franco V, Fabiani C, Taschieri S, Malentacca A, Bortolin M, Del Fabbro M. Investigation on the shaping ability of nickel-titanium files when used with a reciprocating motion. J Endod 2011;37:1398-1401. https://doi.org/10.1016/j.joen.2011.06.030
  11. Burklein S, Hinschitza K, Dammaschke T, Schafer E. Shaping ability and cleaning effectiveness of two single-file systems in severely curved root canals of extracted teeth: Reciproc and WaveOne versus Mtwo and ProTaper. Int Endod J 2012;45:449-461. https://doi.org/10.1111/j.1365-2591.2011.01996.x
  12. Mohammadi Z, Soltani MK, Shalavi S, Asgary S. A Review of the various surface treatments of NiTi Instruments. Iran Endod J 2014;9:235-240.
  13. Aun DP, Peixoto IF, Houmard M, Buono VT. Enhancement of NiTi superelastic endodontic instruments by TiO2 coating. Mater Sci Eng C 2016;68:675-680. https://doi.org/10.1016/j.msec.2016.06.031
  14. Lopes HP, Elias CN, Vieira MV, Vieira VT, de Souza LC, Dos Santos AL. Influence of surface roughness on the fatigue life of nickel-titanium rotary endodontic instruments. J Endod 2016;42:965-968. https://doi.org/10.1016/j.joen.2016.03.001
  15. Zupanc J, Vahdat-Pajouh N, Schafer E. New thermomechanically treated NiTi alloys - a review. Int Endod J 2018;51:1088-1103. https://doi.org/10.1111/iej.12924
  16. Pereira ES, Peixoto IF, Viana AC, Oliveira II, Gonzalez BM, Buono VT, Bahia MG. Physical and mechanical properties of a thermomechanically treated NiTi wire used in the manufacture of rotary endodontic instruments. Int Endod J 2012;45:469-474. https://doi.org/10.1111/j.1365-2591.2011.01998.x
  17. Alapati SB, Brantley WA, Iijima M, Clark WA, Kovarik L, Buie C, Liu J, Ben Johnson W. Metallurgical characterization of a new nickel-titanium wire for rotary endodontic instruments. J Endod 2009;35:1589-1593. https://doi.org/10.1016/j.joen.2009.08.004
  18. Siu C, Marshall JG, Baumgartner JC. An in vivo comparison of the Root ZX II, the Apex NRG XFR, and Mini Apex Locator by using rotary nickel-titanium files. J Endod 2009;35:962-965. https://doi.org/10.1016/j.joen.2009.04.025
  19. Kaval ME, Capar ID, Ertas H, Sen BH. Comparative evaluation of cyclic fatigue resistance of four different nickel-titanium rotary files with different cross-sectional designs and alloy properties. Clin Oral Investig 2017;21:1527-1530. https://doi.org/10.1007/s00784-016-1917-x
  20. Serafin M, De Biasi M, Franco V, Angerame D. In vitro comparison of cyclic fatigue resistance of two rotary single-file endodontic systems: OneCurve versus OneShape. Odontology 2019;107:196-201. https://doi.org/10.1007/s10266-018-0390-1
  21. Shen Y, Coil JM, Zhou H, Zheng Y, Haapasalo M. HyFlex nickel-titanium rotary instruments after clinical use: metallurgical properties. Int Endod J 2013;46:720-729. https://doi.org/10.1111/iej.12049
  22. Ninan E, Berzins DW. Torsion and bending properties of shape memory and superelastic nickel-titanium rotary instruments. J Endod 2013;39:101-104. https://doi.org/10.1016/j.joen.2012.08.010
  23. Topcuoglu HS, Topcuoglu G, Akti A, Duzgun S. In vitro comparison of cyclic fatigue resistance of ProTaper Next, HyFlex CM, OneShape, and ProTaper universal instruments in a canal with a double curvature. J Endod 2016;42:969-971. https://doi.org/10.1016/j.joen.2016.03.010
  24. Tobushi H, Nakahara T, Shimeno Y, Hashimoto T. Low-cycle fatigue of Ni-Ti shape memory alloy and formulation of fatigue life. J Eng Mater Technol 2000;122:186-191. https://doi.org/10.1115/1.482785
  25. Shen Y, Qian W, Abtin H, Gao Y, Haapasalo M, Haapasalo M. Effect of environment on fatigue failure of controlled memory wire nickel-titanium rotary instruments. J Endod 2012;38:376-380. https://doi.org/10.1016/j.joen.2011.12.002
  26. Vadhana S, SaravanaKarthikeyan B, Nandini S, Velmurugan N. Cyclic fatigue resistance of RaCe and Mtwo rotary files in continuous rotation and reciprocating motion. J Endod 2014;40:995-999. https://doi.org/10.1016/j.joen.2013.12.010
  27. Grande NM, Plotino G, Pecci R, Bedini R, Malagnino VA, Somma F. Cyclic fatigue resistance and three-dimensional analysis of instruments from two nickel-titanium rotary systems. Int Endod J 2006;39:755-763. https://doi.org/10.1111/j.1365-2591.2006.01143.x
  28. La Rosa GR, Palermo C, Ferlito S, Isola G, Indelicato F, Pedulla E. Influence of surrounding temperature and angle of file access on cyclic fatigue resistance of two single file nickel-titanium instruments. Aust Endod J 2021;47:260-264.
  29. Rubio J, Zarzosa JI, Pallares A. A comparative study of cyclic fatigue of 10 different types of endodontic instruments: an in vitro study. Acta Stomatol Croat 2019;53:28-36. https://doi.org/10.15644/asc53/1/3
  30. Cheung GS, Zhang EW, Zheng YF. A numerical method for predicting the bending fatigue life of NiTi and stainless steel root canal instruments. Int Endod J 2011;44:357-361. https://doi.org/10.1111/j.1365-2591.2010.01838.x
  31. Capar ID, Ertas H, Arslan H. Comparison of cyclic fatigue resistance of novel nickel-titanium rotary instruments. Aust Endod J 2015;41:24-28. https://doi.org/10.1111/aej.12067
  32. Elnaghy AM, Elsaka SE. Cyclic fatigue resistance of One Curve, 2Shape, ProFile Vortex, Vortex Blue, and RaCe nickel-titanium rotary instruments in single and double curvature canals. J Endod 2018;44:1725-1730. https://doi.org/10.1016/j.joen.2018.07.023
  33. Ye J, Gao Y. Metallurgical characterization of M-Wire nickel-titanium shape memory alloy used for endodontic rotary instruments during low-cycle fatigue. J Endod 2012;38:105-107. https://doi.org/10.1016/j.joen.2011.09.028
  34. Shen Y, Zhou HM, Zheng YF, Campbell L, Peng B, Haapasalo M. Metallurgical characterization of controlled memory wire nickel-titanium rotary instruments. J Endod 2011;37:1566-1571. https://doi.org/10.1016/j.joen.2011.08.005
  35. Iacono F, Pirani C, Generali L, Bolelli G, Sassatelli P, Lusvarghi L, Gandolfi MG, Giorgini L, Prati C. Structural analysis of HyFlex EDM instruments. Int Endod J 2017;50:303-313. https://doi.org/10.1111/iej.12620
  36. Testarelli L, Plotino G, Al-Sudani D, Vincenzi V, Giansiracusa A, Grande NM, Gambarini G. Bending properties of a new nickel-titanium alloy with a lower percent by weight of nickel. J Endod 2011;37:1293-1295. https://doi.org/10.1016/j.joen.2011.05.023
  37. Pongione G, Pompa G, Milana V, Di Carlo S, Giansiracusa A, Nicolini E, De Angelis F. Flexibility and resistance to cyclic fatigue of endodontic instruments made with different nickel-titanium alloys: a comparative test. Ann Stomatol (Roma) 2012;3:119-122.
  38. Santos LA, Bahia MG, de Las Casas EB, Buono VT. Comparison of the mechanical behavior between controlled memory and superelastic nickel-titanium files via finite element analysis. J Endod 2013;39:1444-1447.
  39. Pereira ES, Viana AC, Buono VT, Peters OA, Bahia MG. Behavior of nickel-titanium instruments manufactured with different thermal treatments. J Endod 2015;41:67-71. https://doi.org/10.1016/j.joen.2014.06.005
  40. Goo HJ, Kwak SW, Ha JH, Pedulla E, Kim HC. Mechanical properties of various heat-treated nickel-titanium rotary instruments. J Endod 2017;43:1872-1877. https://doi.org/10.1016/j.joen.2017.05.025
  41. Soares RG, Lopes HP, Elias CN, Vieira MV, Vieira VT, de Paula CB, Alves FR. Comparative study of the mechanical properties of instruments made of conventional, M-wire, R-phase, and controlled memory nickel-titanium alloys. ENDO 2017;11:271-277.
  42. Zhou HM, Shen Y, Zheng W, Li L, Zheng YF, Haapasalo M. Mechanical properties of controlled memory and superelastic nickel-titanium wires used in the manufacture of rotary endodontic instruments. J Endod 2012;38:1535-1540. https://doi.org/10.1016/j.joen.2012.07.006
  43. Capar ID, Kaval ME, Ertas H, Sen BH. Comparison of the cyclic fatigue resistance of 5 different rotary pathfinding instruments made of conventional nickel-titanium wire, M-wire, and controlled memory wire. J Endod 2015;41:535-538. https://doi.org/10.1016/j.joen.2014.11.008
  44. Pedulla E, Lo Savio F, Boninelli S, Plotino G, Grande NM, Rapisarda E, La Rosa G. Influence of cyclic torsional preloading on cyclic fatigue resistance of nickel - titanium instruments. Int Endod J 2015;48:1043-1050. https://doi.org/10.1111/iej.12400
  45. Palma PJ, Messias A, Cerqueira AR, Tavares LD, Caramelo F, Roseiro L, Santos JM. Cyclic fatigue resistance of three rotary file systems in a dynamic model after immersion in sodium hypochlorite. Odontology 2019;107:324-332. https://doi.org/10.1007/s10266-018-0401-2
  46. Topcuoglu HS, Topcuoglu G, Kafdag O, Balkaya H. Effect of two different temperatures on resistance to cyclic fatigue of one Curve, EdgeFile, HyFlex CM and ProTaper next files. Aust Endod J 2020;46:68-72. https://doi.org/10.1111/aej.12369