DOI QR코드

DOI QR Code

How do imaging protocols affect the assessment of root-end fillings?

  • Fernanda Ferrari Esteves Torres (Department of Restorative Dentistry, Sao Paulo State University (UNESP), School of Dentistry) ;
  • Reinhilde Jacobs (OMFS IMPATH Research Group, Department of Imaging & Pathology, Faculty of Medicine, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven) ;
  • Mostafa EzEldeen (OMFS IMPATH Research Group, Department of Imaging & Pathology, Faculty of Medicine, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven) ;
  • Karla de Faria-Vasconcelos (OMFS IMPATH Research Group, Department of Imaging & Pathology, Faculty of Medicine, KU Leuven and Oral and Maxillofacial Surgery, University Hospitals Leuven) ;
  • Juliane Maria Guerreiro-Tanomaru (Department of Restorative Dentistry, Sao Paulo State University (UNESP), School of Dentistry) ;
  • Bernardo Camargo dos Santos (Department of Nuclear Energy, Federal University of Rio de Janeiro (UFRJ)) ;
  • Mario Tanomaru-Filho (Department of Restorative Dentistry, Sao Paulo State University (UNESP), School of Dentistry)
  • Received : 2020.08.17
  • Accepted : 2020.11.11
  • Published : 2022.02.28

Abstract

Objectives: This study investigated the impact of micro-computed tomography (micro-CT)-based voxel size on the analysis of material/dentin interface voids and thickness of different endodontic cements. Materials and Methods: Following root-end resection and apical preparation, maxillary premolars were filled with mineral trioxide aggregate (MTA), Biodentine, and intermediate restorative material (IRM) (n = 24). The samples were scanned using micro-CT (SkyScan 1272; Bruker) and the cement/dentin interface and thickness of materials were evaluated at voxel sizes of 5, 10, and 20 ㎛. Analysis of variance and the Tukey test were conducted, and the degree of agreement between different voxel sizes was evaluated using the Bland and Altman method (p < 0.05). Results: All materials showed an increase in thickness from 5 to 10 and 20 ㎛ (p < 0.05). When evaluating the interface voids, materials were similar at 5 ㎛ (p > 0.05), while at 10 and 20 ㎛ Biodentine showed the lowest percentage of voids (p < 0.05). A decrease in the interface voids was observed for MTA and IRM at 20 ㎛, while Biodentine showed differences among all voxel sizes (p < 0.05). The Bland-Altman plots for comparisons among voxel sizes showed the largest deviations when comparing images between 5 and 20 ㎛. Conclusions: Voxel size had an impact on the micro-CT evaluation of thickness and interface voids of endodontic materials. All cements exhibited an increase in thickness and a decrease in the void percentage as the voxel size increased, especially when evaluating images at 20 ㎛.

Keywords

Acknowledgement

This work was supported in part by the Coordenacao de Aperfeicoamento de Pessoal de Nivel Superior, Brasil (CAPES) Finance Code 001, and was fully supported by the Sao Paulo Research Foundation - FAPESP (grant numbers 2016/00321-0, 2017/22481-1, and 2017/19049-0).

References

  1. Parirokh M, Torabinejad M, Dummer PM. Mineral trioxide aggregate and other bioactive endodontic cements: an updated overview - part I: vital pulp therapy. Int Endod J 2018;51:177-205. https://doi.org/10.1111/iej.12841
  2. Raina A, Sawhny A, Paul S, Nandamuri S. Comparative evaluation of the bond strength of self-adhering and bulk-fill flowable composites to MTA Plus, Dycal, Biodentine, and TheraCal: an in vitro study. Restor Dent Endod 2020;45:e10.
  3. Torres FF, Jacobs R, EzEldeen M, Guerreiro-Tanomaru JM, Dos Santos BC, Lucas-Oliveira E, Bonagamba TJ, Tanomaru-Filho M. Micro-computed tomography high resolution evaluation of dimensional and morphological changes of 3 root-end filling materials in simulated physiological conditions. J Mater Sci Mater Med 2020;31:14.
  4. Torres FF, Guerreiro-Tanomaru JM, Chavez-Andrade GM, Pinto JC, Berbert FL, Tanomaru-Filho M. Micro-computed tomographic evaluation of the flow and filling ability of endodontic materials using different test models. Restor Dent Endod 2020;45:e11.
  5. Biocanin V, Antonijevic D, Postic S, Ilic D, Vukovic Z, Milic M, Fan Y, Li Z, Brkovic B, Duric M. Marginal gaps between 2 calcium silicate and glass ionomer cements and apical root dentin. J Endod 2018;44:816-821. https://doi.org/10.1016/j.joen.2017.09.022
  6. Ozlek E, Gunduz H, Akkol E, Neelakantan P. Dentin moisture conditions strongly influence its interactions with bioactive root canal sealers. Restor Dent Endod 2020;45:e24.
  7. Aksel H, Arslan E, Purali N, Uyanik O, Nagas E. Effect of ultrasonic activation on dentinal tubule penetration of calcium silicate-based cements. Microsc Res Tech 2019;82:624-629. https://doi.org/10.1002/jemt.23209
  8. Karadas M, Atici MG. Bond strength and adaptation of pulp capping materials to dentin. Microsc Res Tech 2020;83:514-522. https://doi.org/10.1002/jemt.23440
  9. Kim K, Kim DV, Kim SY, Yang S. A micro-computed tomographic study of remaining filling materials of two bioceramic sealers and epoxy resin sealer after retreatment. Restor Dent Endod 2019;44:e18.
  10. Orhan K, Jacobs R, Celikten B, Huang Y, de Faria Vasconcelos K, Nicolielo LF, Buyuksungur A, Van Dessel J. Evaluation of threshold values for root canal filling voids in micro-CT and nano-CT images. Scanning 2018;2018:9437569.
  11. Yanpiset K, Banomyong D, Chotvorrarak K, Srisatjaluk RL. Bacterial leakage and micro-computed tomography evaluation in round-shaped canals obturated with bioceramic cone and sealer using matched single cone technique. Restor Dent Endod 2018;43:e30.
  12. Gandolfi MG, Parrilli AP, Fini M, Prati C, Dummer PM. 3D micro-CT analysis of the interface voids associated with Thermafil root fillings used with AH Plus or a flowable MTA sealer. Int Endod J 2013;46:253-263. https://doi.org/10.1111/j.1365-2591.2012.02124.x
  13. Almeida LJ, Penha KJ, Souza AF, Lula EC, Magalhaes FC, Lima DM, Firoozmand LM. Is there correlation between polymerization shrinkage, gap formation, and void in bulk fill composites? A µCT study. Braz Oral Res 2017;31:e100.
  14. Kriznar I, Zanini F, Fidler A. Presentation of gaps around endodontic access cavity restoration by phase contrast-enhanced micro-CT. Clin Oral Investig 2019;23:2371-2381. https://doi.org/10.1007/s00784-018-2680-y
  15. Bouxsein ML, Boyd SK, Christiansen BA, Guldberg RE, Jepsen KJ, Muller R. Guidelines for assessment of bone microstructure in rodents using micro-computed tomography. J Bone Miner Res 2010;25:1468-1486. https://doi.org/10.1002/jbmr.141
  16. Maret D, Peters OA, Galibourg A, Dumoncel J, Esclassan R, Kahn JL, Sixou M, Telmon N. Comparison of the accuracy of 3-dimensional cone-beam computed tomography and micro-computed tomography reconstructions by using different voxel sizes. J Endod 2014;40:1321-1326. https://doi.org/10.1016/j.joen.2014.04.014
  17. Jirik M, Bartos M, Tomasek P, Maleckova A, Kural T, Horakova J, Lukas D, Suchy T, Kochova P, Hubalek Kalbacova M, Kralickova M, Tonar Z. Generating standardized image data for testing and calibrating quantification of volumes, surfaces, lengths, and object counts in fibrous and porous materials using X-ray microtomography. Microsc Res Tech 2018;81:551-568.  https://doi.org/10.1002/jemt.23011
  18. Torres FF, Jacobs R, EzEldeen M, de Faria-Vasconcelos K, Guerreiro-Tanomaru JM, Dos Santos BC, Tanomaru-Filho M. How image-processing parameters can influence the assessment of dental materials using micro-CT. Imaging Sci Dent 2020;50:161-168. https://doi.org/10.5624/isd.2020.50.2.161
  19. EzEldeen M, Van Gorp G, Van Dessel J, Vandermeulen D, Jacobs R; EzEldeen M. 3-dimensional analysis of regenerative endodontic treatment outcome. J Endod 2015;41:317-324. https://doi.org/10.1016/j.joen.2014.10.023
  20. Giavarina D. Understanding bland altman analysis. Biochem Med (Zagreb) 2015;25:141-151. https://doi.org/10.11613/BM.2015.015
  21. De Souza ET, Nunes Tameirao MD, Roter JM, De Assis JT, De Almeida Neves A, De-Deus GA. Tridimensional quantitative porosity characterization of three set calcium silicate-based repair cements for endodontic use. Microsc Res Tech 2013;76:1093-1098. https://doi.org/10.1002/jemt.22270
  22. Cooper D, Turinsky A, Sensen C, Hallgrimsson B. Effect of voxel size on 3D micro-CT analysis of cortical bone porosity. Calcif Tissue Int 2007;80:211-219. https://doi.org/10.1007/s00223-005-0274-6
  23. Bosmans B, Famaey N, Verhoelst E, Bosmans J, Vander Sloten J. A validated methodology for patient specific computational modeling of self-expandable transcatheter aortic valve implantation. J Biomech 2016;49:2824-2830.
  24. Kim JE, Yi WJ, Heo MS, Lee SS, Choi SC, Huh KH. Three-dimensional evaluation of human jaw bone microarchitecture: correlation between the microarchitectural parameters of cone beam computed tomography and micro-computer tomography. Oral Surg Oral Med Oral Pathol Oral Radiol 2015;120:762-770. https://doi.org/10.1016/j.oooo.2015.08.022
  25. Choi JC, Choi CA, Yeo IL. Spiral scanning imaging and quantitative calculation of the 3-dimensional screw-shaped bone-implant interface on micro-computed tomography. J Periodontal Implant Sci 2018;48:202-212. https://doi.org/10.5051/jpis.2018.48.4.202
  26. Marinozzi F, Bini F, Marinozzi A, Zuppante F, De Paolis A, Pecci R, Bedini R. Technique for bone volume measurement from human femur head samples by classification of micro-CT image histograms. Ann Ist Super Sanita 2013;49:300-305.
  27. Ferretti A, Bellan E, Gava M, Chondrogiannis S, Massaro A, Nibale O, Rubello D. Phantom study of the impact of reconstruction parameters on the detection of mini- and micro-volume lesions with a low-dose PET/CT acquisition protocol. Eur J Radiol 2012;81:3363-3370. https://doi.org/10.1016/j.ejrad.2012.05.001
  28. Kucukkaya Eren S, Aksel H, Askerbeyli Ors S, Serper A, Kocak Y, Ocak M, Celik HH. Obturation quality of calcium silicate-based cements placed with different techniques in teeth with perforating internal root resorption: a micro-computed tomographic study. Clin Oral Investig 2019;23:805-811. https://doi.org/10.1007/s00784-018-2502-2
  29. Ozturk TY, Guneser MB, Taschieri S, Maddalone M, Dincer AN, Venino PM, Del Fabbro M. Do the intracanal medicaments affect the marginal adaptation of calcium silicate-based materials to dentin? J Dent Sci 2019;14:157-162. https://doi.org/10.1016/j.jds.2019.01.012
  30. Kucukkaya Eren S, Gorduysus MO, Sahin C. Sealing ability and adaptation of root-end filling materials in cavities prepared with different techniques. Microsc Res Tech 2017;80:756-762. https://doi.org/10.1002/jemt.22861
  31. Kerckhofs G, Schrooten J, Van Cleynenbreugel T, Lomov SV, Wevers M. Validation of x-ray microfocus computed tomography as an imaging tool for porous structures. Rev Sci Instrum 2008;79:013711.
  32. Ber BS, Hatton JF, Stewart GP. Chemical modification of proroot mta to improve handling characteristics and decrease setting time. J Endod 2007;33:1231-1234. https://doi.org/10.1016/j.joen.2007.06.012
  33. Camilleri J, Sorrentino F, Damidot D. Investigation of the hydration and bioactivity of radiopacified tricalcium silicate cement, Biodentine and MTA Angelus. Dent Mater 2013;29:580-593. https://doi.org/10.1016/j.dental.2013.03.007
  34. Isaksson H, Toyras J, Hakulinen M, Aula AS, Tamminen I, Julkunen P, Kroger H, Jurvelin JS. Structural parameters of normal and osteoporotic human trabecular bone are affected differently by microCT image resolution. Osteoporos Int 2011;22:167-177.  https://doi.org/10.1007/s00198-010-1219-0
  35. Kim DG, Christopherson GT, Dong XN, Fyhrie DP, Yeni YN. The effect of microcomputed tomography scanning and reconstruction voxel size on the accuracy of stereological measurements in human cancellous bone. Bone 2004;35:1375-1382. https://doi.org/10.1016/j.bone.2004.09.007
  36. Sode M, Burghardt AJ, Nissenson RA, Majumdar S. Resolution dependence of the non-metric trabecular structure indices. Bone 2008;42:728-736.  https://doi.org/10.1016/j.bone.2007.12.004