DOI QR코드

DOI QR Code

Design and Evaluation of IMI Multilayer Hybrid Structure-based Performance Enhanced Surface Plasmon Resonance Sensor for Biological Analysis

생물학적 분석용 IMI 하이브리드 다중레이어 구조 기반 성능 향상된 표면 플라즈몬 공명 센서의 설계 및 특성 분석

  • Song, Hyerin (Department of Cogno-Mechatronics Engineering, Pusan National University) ;
  • Ahn, Heesang (Department of Cogno-Mechatronics Engineering, Pusan National University) ;
  • Kim, Kyujung (Department of Cogno-Mechatronics Engineering, Pusan National University)
  • 송혜린 (부산대학교 인지메카트로닉스공학과) ;
  • 안희상 (부산대학교 인지메카트로닉스공학과) ;
  • 김규정 (부산대학교 인지메카트로닉스공학과)
  • Received : 2022.07.20
  • Accepted : 2022.08.01
  • Published : 2022.08.25

Abstract

The performance of a surface plasmon resonance sensor is evaluated based on the sensitivity (nm/RIU) and sharpness from the full width at half maximum (FWHM) and the peak depth of a resonance peak. These factors are determined by the materials and conformational properties of the sensing structure. In this paper, we investigated an optimized insulator-metal-insulator (IMI) multilayer-based surface plasmon resonance sensor structure to simultaneously achieve high sensitivity, narrow FWHM, and deep peak depth while using gold for the metallic film layer which occurs peak broadening. By adopting the optimized structure, sensitivity of 8,390 nm/RIU, FWHM of 11.92 nm, and a resonance peak depth of 93.1% were achieved for 1.45-1.46 refractive index variation of the sensing layer. With the suggested structure conformation, high sensitivity and resolution of sensing performance can be achieved.

표면 플라즈몬 공명 센서에서 센서의 성능은 민감도(nm/RIU)와 분해능인 공명 픽의 형태에 의해서 결정된다. 이러한 특성은 센서에 활용되는 구조체의 물질과 구조적 특성에 따라 달라진다. 본 연구에서는 insulator-metal-insulator (IMI) 다중 층 구조를 기반으로 한 표면 플라즈몬 공명 센서 구조의 최적화 과정을 통해 센싱 레이어의 굴절률 변화에 대한 높은 민감도 달성과 동시에 좁은 full width at half maximum (FWHM)과 픽의 깊이 이 두 가지의 요소를 기반으로 한 분해능이 큰 공명 픽을 형성하도록 하는 구조를 찾았다. 이 구조를 통해 센싱 레이어의 굴절률이 1.45-1.46 범위에서 변화할 때 FWHM = 11.92 nm, 픽 깊이 93.1%의 공명 픽이 형성되었고 최대 8,390 nm/RIU의 민감도 성능을 확인했다. 특히 금 박막을 활용한 파장 기반의 표면 플라즈몬 센서는 공명 픽의 너비 확장이 발생하나 금 박막을 사용하고도 좁은 FWHM을 달성함에 의의가 있다. 본 연구에서 제안하는 다중 층 설계를 기반으로 한 센서는 미세한 굴절률 변화 값에 대한 높은 민감도와 더불어 높은 분해능을 가지는 파장 기반 표면 플라즈몬 센서로 활용 가능하다.

Keywords

Acknowledgement

이 과제는 2019년도 부산대학교 교수국외장기파견 지원비에 의하여 연구되었음.

References

  1. M. L. Sin, K. E. Mach, P. K. Wong, and J. C. Liao, "Advances and challenges in biosensor-based diagnosis of infectious diseases," Expert Rev. Mol. Diagn. 14, 225-244 (2014). https://doi.org/10.1586/14737159.2014.888313
  2. L. Huang, L. Ding, J. Zhou, S. Chen, F. Chen, C. Zhao, J. Xu, W. Hu, J. Ji, H. Xu, and G. L. Liu, "One-step rapid quantification of SARS-CoV-2 virus particles via low-cost nanoplasmonic sensors in generic microplate reader and point-of-care device," Biosens. Bioelectron. 171, 112685 (2021). https://doi.org/10.1016/j.bios.2020.112685
  3. M. Yuce, E. Filiztekin, and K. G. Ozkaya, "COVID-19 diagnosis-A review of current methods," Biosens. Bioelectron. 172, 112752 (2021). https://doi.org/10.1016/j.bios.2020.112752
  4. B. Chocarro-Ruiz, A. Fernandez-Gavela, S. Herranz, and L. M. Lechuga, "Nanophotonic label-free biosensors for environmental monitoring," Curr. Opin. Biotechnol. 45, 175-183 (2017). https://doi.org/10.1016/j.copbio.2017.03.016
  5. M. N. Weiss, R. Srivastava, H. Groger, P. Lo, and S.-F. Luo, "A theoretical investigation of environmental monitoring using surface plasmon resonance waveguide sensors," Sens. Actuator A: Phys. 51, 211-217 (1996). https://doi.org/10.1016/0924-4247(95)01208-7
  6. Y. Zhao, M. Lei, S.-X. Liu, and Q. Zhao, "Smart hydrogel-based optical fiber SPR sensor for pH measurements," Sens. Actuators B: Chem. 261, 226-232 (2018). https://doi.org/10.1016/j.snb.2018.01.120
  7. S. K. Mishra and B. D. Gupta, "Surface plasmon resonance based fiber optic pH sensor utilizing Ag/ITO/Al/hydrogel layers," Analyst 138, 2640-2646 (2013). https://doi.org/10.1039/c3an00097d
  8. Y. Singh, M. K. Paswan, and S. K. Raghuwanshi, "Sensitivity enhancement of SPR sensor with the black phosphorus and graphene with bi-layer of gold for chemical sensing," Plasmonics 16, 1781-1790 (2021). https://doi.org/10.1007/s11468-020-01315-3
  9. J. Homola, "Surface plasmon resonance sensors for detection of chemical and biological species," Chem. Rev. 108, 462-493 (2008). https://doi.org/10.1021/cr068107d
  10. M. Piliarik, L. Parova, and J. Homola, "High-throughput SPR sensor for food safety," Biosens. Bioelectron. 24, 1399-1404 (2022). https://doi.org/10.1016/j.bios.2008.08.012
  11. C. Situ, M. H. Mooney, C. T. Elliott, and J. Buijs, "Advances in surface plasmon resonance biosensor technology towards high-throughput, food-safety analysis," Trends Analyt. Chem. 29, 1305-1315 (2010). https://doi.org/10.1016/j.trac.2010.09.003
  12. Y. Lee, H. Song, H. Ahn, J.-R. Choi, and K. Kim, "Rapid and real-time diagnosis of hypoalbuminemia using an extraordinary optical transmission biosensor," Sens. Actuators B: Chem. 274, 595-600 (2018). https://doi.org/10.1016/j.snb.2018.07.119
  13. E. Kretschmann and H. Raether, "Radiative decay of non radiative surface plasmons excited by light," Z. Naturforsch. A 23, 2135-2136 (1968). https://doi.org/10.1515/zna-1968-1247
  14. H. Ahn, H. Song, J.-R. Choi, and K. Kim, "A localized surface plasmon resonance sensor using double-metal-complex nanostructures and a review of recent approaches," Sensors 18, 98 (2018). https://doi.org/10.3390/s18010098
  15. S. Shukla, N. K. Sharma, and V. Sajal, "Sensitivity enhancement of a surface plasmon resonance based fiber optic sensor using ZnO thin film: a theoretical study," Sens. Actuators B: Chem. 206, 463-470 (2015). https://doi.org/10.1016/j.snb.2014.09.083
  16. S. Hayashi, D. V. Nesterenko, and Z. Sekkat, "Fano resonance and plasmon-induced transparency in waveguide-coupled surface plasmon resonance sensors," Appl. Phys. Express 8, 022201 (2015). https://doi.org/10.7567/APEX.8.022201
  17. A. Lotfiani, M. Ghanaatshoar, and S. M. Mohseni, "Miniaturized optoelectronic SPR sensor based on integrated planar waveguide and MIM hot-electron photodetector," IEEE Trans. Electron. Devices 66, 5215-5220 (2019). https://doi.org/10.1109/ted.2019.2950297
  18. W. N. Hansen, "Electric fields produced by the propagation of plane coherent electromagnetic radiation in a stratified medium," J. Opt. Soc. Am. 58, 380-390 (1968). https://doi.org/10.1364/JOSA.58.000380
  19. A. Verma, A. Prakash, and R. Tripathi, "Performance analysis of graphene based surface plasmon resonance biosensors for detection of pseudomonas-like bacteria," Opt. Quantum Electron. 47, 1197-1205 (2015). https://doi.org/10.1007/s11082-014-9976-1
  20. M. Wang, Y. Huo, S. Jiang, C. Zhang, C. Yang, T. Ning, X. Liu, C. Li, W. Zhang, and B. Man, "Theoretical design of a surface plasmon resonance sensor with high sensitivity and high resolution based on graphene-WS2 hybrid nanostructures and Au-Ag bimetallic film," RSC Adv. 7, 47177-47182 (2017). https://doi.org/10.1039/C7RA08380G
  21. P. B. Johnson and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B 6, 4370-4379 (1972). https://doi.org/10.1103/PhysRevB.6.4370
  22. J. Homola, S. S. Yee, and G. Gauglitz, "Surface plasmon resonance sensors," Sens. Actuators B: Chem. 54, 3-15 (1999). https://doi.org/10.1016/S0925-4005(98)00321-9
  23. X. Huang, S. Neretina, and M. A. El-Sayed, "Gold nanorods: from synthesis and properties to biological and biomedical applications," Adv. Mater. 21, 4880-4910 (2009). https://doi.org/10.1002/adma.200802789
  24. A. K. Sharma and B. D. Gupta, "On the sensitivity and signal to noise ratio of a step-index fiber optic surface plasmon resonance sensor with bimetallic layers," Opt. Commun. 245, 159-169 (2005). https://doi.org/10.1016/j.optcom.2004.10.013