DOI QR코드

DOI QR Code

Metaheuristic-reinforced neural network for predicting the compressive strength of concrete

  • Hu, Pan (School of Civil and Architectural Engineering, Technical University of Munich) ;
  • Moradi, Zohre (Faculty of Engineering and Technology, Department of Electrical Engineering, Imam Khomeini International University) ;
  • Ali, H. Elhosiny (Advanced Functional Materials & Optoelectronic Laboratory (AFMOL), Department of Physics, Faculty of Science, King Khalid University) ;
  • Foong, Loke Kok (Faculty of Civil Engineering, Duy Tan University)
  • Received : 2020.08.24
  • Accepted : 2022.06.18
  • Published : 2022.08.25

Abstract

Computational drawbacks associated with regular predictive models have motivated engineers to use hybrid techniques in dealing with complex engineering tasks like simulating the compressive strength of concrete (CSC). This study evaluates the efficiency of tree potential metaheuristic schemes, namely shuffled complex evolution (SCE), multi-verse optimizer (MVO), and beetle antennae search (BAS) for optimizing the performance of a multi-layer perceptron (MLP) system. The models are fed by the information of 1030 concrete specimens (where the amount of cement, blast furnace slag (BFS), fly ash (FA1), water, superplasticizer (SP), coarse aggregate (CA), and fine aggregate (FA2) are taken as independent factors). The results of the ensembles are compared to unreinforced MLP to examine improvements resulted from the incorporation of the SCE, MVO, and BAS. It was shown that these algorithms can considerably enhance the training and prediction accuracy of the MLP. Overall, the proposed models are capable of presenting an early, inexpensive, and reliable prediction of the CSC. Due to the higher accuracy of the BAS-based model, a predictive formula is extracted from this algorithm.

Keywords

References

  1. Bui, D.K., Nguyen, T., Chou, J.S., Nguyen-Xuan, H. and Ngo, T.D. (2018), "A modified firefly algorithm-artificial neural network expert system for predicting compressive and tensile strength of high-performance concrete", Constr. Build. Mater., 180, 320-333. https://doi.org/10.1016/j.conbuildmat.2018.05.201
  2. Cao, B., Zhao, J., Liu, X., Arabas, J., Tanveer, M., Singh, A.K. and Lv, Z. (2022), "Multiobjective evolution of the explainable fuzzy rough neural network with gene expression programming", IEEE Transact. Fuzzy Syst. https://doi.org/10.1109/TFUZZ.2022.3141761
  3. Chen, Y., Lin, H., Cao, R. and Zhang, C. (2021), "Slope stability analysis considering different contributions of shear strength parameters", Int. J. Geomech., 21(3), 04020265. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001937
  4. Chopra, P., Sharma, R.K., Kumar, M. and Chopra, T. (2018), "Comparison of machine learning techniques for the prediction of compressive strength of concrete", Adv. Civil Eng., 2018. https://doi.org/10.1155/2018/5481705
  5. Chou, J.S., Chiu, C.K., Farfoura, M. and Al-Taharwa, I. (2011), "Optimizing the prediction accuracy of concrete compressive strength based on a comparison of data-mining techniques", J. Comput. Civil Eng., 25(3), 242-253. https://doi.org/10.1061/(asce)cp.1943-5487.0000088
  6. Chou, J.S., Tsai, C.F., Pham, A.D. and Lu, Y.H. (2014), "Machine learning in concrete strength simulations: Multi-nation data analytics", Constr. Build. Mater., 73, 771-780. https://doi.org/10.1016/j.conbuildmat.2014.09.054
  7. DeRousseau, M.A., Laftchiev, E., Kasprzyk, J.R., Rajagopalan, B. and Srubar III, W.V. (2019), "A comparison of machine learning methods for predicting the compressive strength of field-placed concrete", Constr. Build. Mater., 228, 116661. https://doi.org/10.1016/j.conbuildmat.2019.08.042
  8. Duan, Q. (1991), "A global optimization strategy for efficient and effective calibration of hydrologic models", Dissertation-Reproduction; The University of Arizona, Tucson, AZ, USA.
  9. Duan, Q.Y., Gupta, V.K. and Sorooshian, S. (1993), "Shuffled complex evolution approach for effective and efficient global minimization", J. Optimiz. Theory Applicat., 76(3), 501-521. https://doi.org/10.1007/BF00939380
  10. Duan, J., Asteris, P.G., Nguyen, H., Bui, X.N. and Moayedi, H. (2020), "A novel artificial intelligence technique to predict compressive strength of recycled aggregate concrete using ICA-XGBoost model", Eng. Comput., 37(4), 3329-3346. https://doi.org/10.1007/s00366-020-01003-0
  11. Dutta, S., Samui, P. and Kim, D. (2018), "Comparison of machine learning techniques to predict compressive strength of concrete", Comput. Concrete, Int. J., 21(4), 463-470. https://doi.org/10.12989/cac.2018.21.4.463
  12. Faris, H., Hassonah, M.A., Al-Zoubi, A.M., Mirjalili, S. and Aljarah, I. (2018), "A multi-verse optimizer approach for feature selection and optimizing SVM parameters based on a robust system architecture", Neural Comput. Applicat., 30(8), 2355-2369. https://doi.org/10.1007/s00521-016-2818-2
  13. Fathy, A. and Rezk, H. (2018), "Multi-verse optimizer for identifying the optimal parameters of PEMFC model", Energy, 143, 634-644. https://doi.org/10.1016/j.energy.2017.11.014
  14. Feng, J., Chen, B., Sun, W. and Wang, Y. (2021), "Microbial induced calcium carbonate precipitation study using Bacillus subtilis with application to self-healing concrete preparation and characterization", Constr. Build. Mater., 280, 122460. https://doi.org/10.1016/j.conbuildmat.2021.122460
  15. Gandomi, A.H., Alavi, A.H., Arjmandi, P., Aghaeifar, A. and Seyednour, R. (2010), "Genetic programming and orthogonal least squares: a hybrid approach to modeling the compressive strength of CFRP-confined concrete cylinders", J. Mech. Mater. Struct., 5(5), 735-753. https://doi.org/10.2140/jomms.2010.5.735
  16. Han, T., Siddique, A., Khayat, K., Huang, J. and Kumar, A. (2020), "An ensemble machine learning approach for prediction and optimization of modulus of elasticity of recycled aggregate concrete", Constr. Build. Mater., 244, 118271. https://doi.org/10.1016/j.conbuildmat.2020.118271
  17. Henigal, A., Elbeltgai, E., Eldwiny, M. and Serry, M. (2016), "Artificial neural network model for forecasting concrete compressive strength and slump in Egypt", J. Al-Azhar Univ. Eng. Sector, 11(39), 435-446. https://doi.org/10.21608/auej.2016.19445
  18. Holland, J.H. (1992), Adaptation in natural and artificial systems: an introductory analysis with applications to biology, control, and artificial intelligence, MIT press.
  19. Huang, H., Huang, M., Zhang, W. and Yang, S. (2021), "Experimental study of predamaged columns strengthened by HPFL and BSP under combined load cases", Struct. Infrastr. Eng., 17(9), 1210-1227. https://doi.org/10.1080/15732479.2020.1801768
  20. Jiang, X. and Li, S. (2017), "BAS: beetle antennae search algorithm for optimization problems", arXiv preprint, arXiv: 1710.10724. https://doi.org/10.5430/ijrc.v1n1p1
  21. Jiang, X., Lin, Z., He, T., Ma, X., Ma, S. and Li, S. (2020), "Optimal path finding with beetle antennae search algorithm by using ant colony optimization initialization and different searching strategies", IEEE Access, 8, 15459-15471. https://doi.org/10.1109/ACCESS.2020.2965579
  22. Linh, N.T.T., Pandey, M., Janizadeh, S., Bhunia, G.S., Norouzi, A., Ali, S., Pham, Q.B., Anh, D.T. and Ahmadi, K. (2022), "Flood susceptibility modeling based on new hybrid intelligence model: Optimization of XGboost model using GA metaheuristic algorithm", Adv. Space Res., 69(9), 3301-3318. https://doi.org/10.1016/j.asr.2022.02.027
  23. Lu, N., Wang, H., Wang, K. and Liu, Y. (2021), "Maximum probabilistic and dynamic traffic load effects on short-to-medium span bridges", Comput. Model. Eng. Sci., 127(1), 345-360. https://doi.org/10.32604/cmes.2021.013792
  24. Luo, Y., Zheng, H., Zhang, H. and Liu, Y. (2021), "Fatigue reliability evaluation of aging prestressed concrete bridge accounting for stochastic traffic loading and resistance degradation", Adv. Struct. Eng., 24(13), 3021-3029. https://doi.org/10.1177/13694332211017995
  25. Ly, H.B., Pham, B.T., Dao, D.V., Le, V.M., Le, L.M. and Le, T.T. (2019), "Improvement of ANFIS model for prediction of compressive strength of manufactured sand concrete", Appl. Sci., 9(18), 3841. https://doi.org/10.3390/app9183841
  26. Ma, X., Foong, L.K., Morasaei, A., Ghabussi, A. and Lyu, Z. (2020), "Swarm-based hybridizations of neural network for predicting the concrete strength", Smart Struct. Syst., Int. J., 26(2), 241-251. https://doi.org/10.12989/sss.2020.26.2.241
  27. Mak, S.L. and Torii, K. (1995), "Strength development of high strength concretes with and without silica fume under the influence of high hydration temperatures", Cement Concrete Res., 25(8), 1791-1802. https://doi.org/10.1016/0008-8846(95)00175-1
  28. Mashhadban, H., Kutanaei, S.S. and Sayarinejad, M.A. (2016), "Prediction and modeling of mechanical properties in fiber reinforced self-compacting concrete using particle swarm optimization algorithm and artificial neural network", Constr. Build. Mater., 119, 277-287. https://doi.org/10.1016/j.conbuildmat.2016.05.034
  29. Mehrabi, M. (2021), "Landslide susceptibility zonation using statistical and machine learning approaches in Northern Lecco, Italy", Natural Hazards, 111(1), 901-937. https://doi.org/10.1007/s11069-021-05083-z
  30. Mehrabi, M. and Moayedi, H. (2021), "Landslide susceptibility mapping using artificial neural network tuned by metaheuristic algorithms", Environ. Earth Sci., 80(24), 1-20. https://doi.org/10.1007/s12665-021-10098-7
  31. Mehrabi, M., Pradhan, B., Moayedi, H. and Alamri, A. (2020), "Optimizing an adaptive neuro-fuzzy inference system for spatial prediction of landslide susceptibility using four state-of-the-art metaheuristic techniques", Sensors, 20(6), 1723. https://doi.org/10.3390/s20061723
  32. Mirjalili, S., Mirjalili, S.M. and Hatamlou, A. (2016), "Multi-verse optimizer: a nature-inspired algorithm for global optimization", Neural Comput. Applicat., 27(2), 495-513. https://doi.org/10.1007/s00521-015-1870-7
  33. Mirzahosseini, M., Jiao, P., Barri, K., Riding, K.A. and Alavi, A.H. (2019), "New machine learning prediction models for compressive strength of concrete modified with glass cullet", Eng. Computat., 36(3), 876-898. https://doi.org/10.1108/ec-08-2018-0348
  34. Moayedi, H., Kalantar, B., Foong, L.K., Tien Bui, D. and Motevalli, A. (2019a), "Application of three metaheuristic techniques in simulation of concrete slump", Appl. Sci.-Basel, 9(20), 4340. https://doi.org/10.3390/app9204340
  35. Moayedi, H., Mehrabi, M., Kalantar, B., Abdullahi Mu'azu, M., A. Rashid, A.S., Foong, L.K. and Nguyen, H. (2019b), "Novel hybrids of adaptive neuro-fuzzy inference system (ANFIS) with several metaheuristic algorithms for spatial hazard assessment of seismic-induced landslide", Geomat. Natural Hazards Risk, 10(1), 1879-1911. https://doi.org/10.1080/19475705.2019.1650126
  36. Moayedi, H., Mehrabi, M., Mosallanezhad, M., Rashid, A.S.A. and Pradhan, B. (2019c), "Modification of landslide susceptibility mapping using optimized PSO-ANN technique", Eng. Comput., 35(3), 967-984. https://doi.org/10.1007/s00366-018-0644-0
  37. Moayedi, H., Mehrabi, M., Bui, D.T., Pradhan, B. and Foong, L.K. (2020), "Fuzzy-metaheuristic ensembles for spatial assessment of forest fire susceptibility", J. Environ. Manage., 260, 109867. https://doi.org/10.1016/j.jenvman.2019.109867
  38. Mohammadhassani, M., Nezamabadi-Pour, H., Suhatril, M. and Shariati, M. (2014), "An evolutionary fuzzy modelling approach and comparison of different methods for shear strength prediction of high-strength concrete beams without stirrups", Smart Struct. Syst., Int. J., 14(5), 785-809. https://doi.org/10.12989/.2014.14.5.785
  39. Mohammadhassani, M., Saleh, A., Suhatril, M. and Safa, M. (2015), "Fuzzy modelling approach for shear strength prediction of RC deep beams", Smart Struct. Syst., Int. J., 16(3), 497-519. https://doi.org/10.12989/sss.2015.16.3.497
  40. Nehdi, M. and Greenough, T. (2007), "Modeling shear capacity of RC slender beams without stirrups using genetic algorithms", Smart Struct. Syst., Int. J., 3(1), 51-68. https://doi.org/10.12989/sss.2007.3.1.051
  41. Nehdi, M., El Chabib, H. and Said, A. (2006), "Evaluation of shear capacity of FRP reinforced concrete beams using artificial neural networks", Smart Struct. Syst., Int. J., 2(1), 81-100. https://doi.org/10.12989/sss.2006.2.1.081
  42. Nguyen, K.T., Nguyen, Q.D., Le, T.A., Shin, J. and Lee, K. (2020a), "Analyzing the compressive strength of green fly ash based geopolymer concrete using experiment and machine learning approaches", Constr. Build. Mater., 247, 118581. https://doi.org/10.1016/j.conbuildmat.2020.118581
  43. Nguyen, T.A., Ly, H.B., Mai, H.V.T. and Tran, V.Q. (2020b), "Prediction of later-age concrete compressive strength using feedforward neural network", Adv. Mater. Sci. Eng., 2020. https://doi.org/10.1155/2020/9682740
  44. Onat, O. and Celik, E. (2017), "An integral based fuzzy approach to evaluate waste materials for concrete", Smart Struct. Syst., Int. J., 19(3), 323-333. https://doi.org/10.12989/sss.2017.19.3.323
  45. Pham, A.D., Hoang, N.D. and Nguyen, Q.T. (2016), "Predicting compressive strength of high-performance concrete using metaheuristic-optimized least squares support vector regression", J. Comput. Civil Eng., 30(3), 06015002. https://doi.org/10.1061/(asce)cp.1943-5487.0000506
  46. Prayogo, D. (2018), "Metaheuristic-based machine learning system for prediction of compressive strength based on concrete mixture properties and early-age strength test results", Civil Eng. Dimens., 20(1), 21-29. https://doi.org/10.9744/ced.20.1.21-29
  47. Prayogo, D., Cheng, M.Y., Widjaja, J., Ongkowijoyo, H. and Prayogo, H. (2017), "Prediction of concrete compressive strength from early age test result using an advanced metaheuristic-based machine learning technique", In: ISARC. Proceedings of the International Symposium on Automation and Robotics in Construction, Vol. 34.
  48. Price, W. (1983), "Global optimization by controlled random search", J. Optimiz. Theory Applicat., 40(3), 333-348. https://doi.org/10.1007/BF00933504
  49. Sadowski, L., Nikoo, M., Shariq, M., Joker, E. and Czarnecki, S. (2019), "The nature-inspired metaheuristic method for predicting the creep strain of green concrete containing ground granulated blast furnace slag", Materials, 12(2), 293. https://doi.org/10.3390/ma12020293
  50. Sadrmomtazi, A., Sobhani, J. and Mirgozar, M.A. (2013), "Modeling compressive strength of EPS lightweight concrete using regression, neural network and ANFIS", Constr. Build. Mater., 42, 205-216. https://doi.org/10.1016/j.conbuildmat.2013.01.016
  51. Seong, C., Her, Y. and Benham, B.L. (2015), "Automatic calibration tool for hydrologic simulation program-FORTRAN using a shuffled complex evolution algorithm", Water, 7(2), 503-527. https://doi.org/10.3390/w7020503
  52. Seyedashraf, O., Mehrabi, M. and Akhtari, A.A. (2018), "Novel approach for dam break flow modeling using computational intelligence", J. Hydrol., 559, 1028-1038. https://doi.org/10.1016/j.jhydrol.2018.03.001
  53. Shariati, M., Mafipour, M.S., Mehrabi, P., Ahmadi, M., Wakil, K., Trung, N.T. and Toghroli, A. (2020), "Prediction of concrete strength in presence of furnace slag and fly ash using Hybrid ANN-GA (Artificial Neural Network-Genetic Algorithm)", Smart Struct. Syst., Int. J., 25(2), 183-195. https://doi.org/10.12989/sss.2020.25.2.183
  54. Shi, T., Lan, Y., Hu, Z., Wang, H., Xu, J. and Zheng, B. (2022), "Tensile and Fracture Properties of Silicon Carbide Whisker-Modified Cement-Based Materials", Int. J. Concrete Struct. Mater., 16(1), 1-13. https://doi.org/10.1186/s40069-021-00495-4
  55. Sun, L., Koopialipoor, M., Jahed Armaghani, D., Tarinejad, R. and Tahir, M.M. (2019a), "Applying a meta-heuristic algorithm to predict and optimize compressive strength of concrete samples", Eng. Comput., 37(2), 1133-1145. https://doi.org/10.1007/s00366-019-00875-1
  56. Sun, Y., Zhang, J., Li, G., Wang, Y., Sun, J. and Jiang, C. (2019b), "Optimized neural network using beetle antennae search for predicting the unconfined compressive strength of jet grouting coalcretes", Int. J. Numer. Anal. Methods Geomech., 43(4), 801-813. https://doi.org/10.1002/nag.2891
  57. Tegmark, M. (2003), "Parallel universes", Sci. Am., 288(5), 40-51. https://doi.org/10.1038/scientificamerican0503-40
  58. Tien Bui, D., Abdullahi, M.A.M., Ghareh, S., Moayedi, H. and Nguyen, H. (2019), "Fine-tuning of neural computing using whale optimization algorithm for predicting compressive strength of concrete", Eng. Comput., 37(1), 701-712. https://doi.org/10.1007/s00366-019-00850-w
  59. Wu, Q., Ma, Z., Xu, G., Li, S. and Chen, D. (2019), "A novel neural network classifier using beetle antennae search algorithm for pattern classification", IEEE access, 7, 64686-64696. https://doi.org/10.1109/ACCESS.2019.2917526
  60. Xie, S.J., Lin, H., Chen, Y.F. and Wang, Y.X. (2021), "A new nonlinear empirical strength criterion for rocks under conventional triaxial compression", J. Central South Univ., 28(5), 1448-1458. https://doi.org/10.1007/s11771-021-4708-8
  61. Xu, H., Wang, X.Y., Liu, C.N., Chen, J.N. and Zhang, C. (2021), "A 3D root system morphological and mechanical model based on L-Systems and its application to estimate the shear strength of root-soil composites", Soil Tillage Res., 212, 105074. https://doi.org/10.1016/j.still.2021.105074
  62. Yeh, I.C. (1998), "Modeling of strength of high-performance concrete using artificial neural networks", Cement Concrete Res., 28(12), 1797-1808. https://doi.org/10.1016/S0008-8846(98)00165-3
  63. Yeh, I.C. (2006), "Analysis of strength of concrete using design of experiments and neural networks", J. Mater. Civil Eng., 18(4), 597-604. https://doi.org/10.1061/(asce)0899-1561(2006)18:4(597)
  64. Young, B.A., Hall, A., Pilon, L., Gupta, P. and Sant, G. (2019), "Can the compressive strength of concrete be estimated from knowledge of the mixture proportions?: New insights from statistical analysis and machine learning methods", Cement Concrete Res., 115, 379-388. https://doi.org/10.1016/j.cemconres.2018.09.006
  65. Yuan, Q., Shi, C., De Schutter, G., Audenaert, K. and Deng, D. (2009), "Chloride binding of cement-based materials subjected to external chloride environment-a review", Constr. Build. Mater., 23(1), 1-13. https://doi.org/10.1016/j.conbuildmat.2008.02.004
  66. Zhang, C. and Abedini, M. (2022), "Development of PI model for FRP composite retrofitted RC columns subjected to high strain rate loads using LBE function", Eng. Struct., 252, 113580. https://doi.org/10.1016/j.engstruct.2021.113580
  67. Zhang, W. and Tang, Z. (2021), "Numerical modeling of response of CFRP-Concrete interfaces subjected to fatigue loading", J. Compos. Constr., 25(5), 04021043. https://doi.org/10.1061/(ASCE)CC.1943-5614.0001154
  68. Zhang, Y., Li, S. and Xu, B. (2021), "Convergence analysis of beetle antennae search algorithm and its applications", Soft Comput., 25(16), 10595-10608. https://doi.org/10.1007/s00500-021-05991-z