DOI QR코드

DOI QR Code

Unified coordination control strategy for DC solid-state transformer in DC microgrid

  • Jia, Yanbing (College of Electrical and Power Engineering, Taiyuan University of Technology) ;
  • Zhao, Pei (College of Electrical and Power Engineering, Taiyuan University of Technology) ;
  • Tian, Jinjie (Datong Power Supply Company, State Grid Shanxi Electric Power Company) ;
  • Meng, Xiangqi (College of Electrical and Power Engineering, Taiyuan University of Technology) ;
  • Wu, Han (College of Electrical and Power Engineering, Taiyuan University of Technology)
  • Received : 2021.12.01
  • Accepted : 2022.04.04
  • Published : 2022.08.20

Abstract

The existing control strategies of DC solid-state transformer (DCSST) are based on DC distribution system, which is mainly concentrated on one side voltage stability control without considering the change of control objectives under different conditions. Thus, they are unsuitable for multiterminal and multisource DC microgrid. The coordinated control strategy of DCSST in multiterminal and multisource DC microgrid is studied in this paper. The DCSST circuit models based on the series-parallel structure of dual active full bridge converter are established, and the basic control modes are analyzed: control low voltage mode and control high voltage mode. Combined with the characteristics of DC bus voltage fluctuation and the operation conditions of DCSST, a unified coordinated control strategy is proposed. Experimental results show that the proposed control strategy can correctly identify the different power states of the two sides of the system, control the power exchange between the two sides of the system, and maintain the stable operation of the whole DC system.

Keywords

Acknowledgement

The authors acknowledge the support of the Key Research Projects (International Science and Technology Cooperation) in Shanxi Province (201803-D421010).

References

  1. Xiao, J., Wang, P., Setyawan, L.: Implementation of multi-pleslack-terminal DC microgrids for smooth transitions between grid-tied and islanded states. IEEE Trans. Smart Grid. 7(1), 273-281 (2017) https://doi.org/10.1109/TSG.2015.2445834
  2. Shi Z., Li C., Lei Z., Yang Y., He J., Song J.: Lichtenberg figures presenting electrostatic discharge patterns at different humidity. J. Phys. D Appl. Phys. 54(34), 34LT01 (2021) (5pp)
  3. Meng, R., Du, Y., Han, X., Wang, L., Wang, P.: Coordinated control of series compensation link and bus interface converter in the AC-DC hybrid microgrid. J. Power Electron. 20(2), 590-600 (2020) https://doi.org/10.1007/s43236-020-00050-6
  4. Xu, Q., Vafamand, N., Chen, L., Dragicevic, T., Xie, L., Blaabjerg, F.: Review on advanced control technologies for bidirectional DC/DC converters in DC microgrids. IEEE J. Emerg. Sel. Top. Power Electron. 9(2), 1205-1221 (2021) https://doi.org/10.1109/JESTPE.2020.2978064
  5. Peltoniemi, P., Nuutinen, P., Pyrhonen, J.: Observer-based output voltage control for DC power distribution purposes. IEEE Trans. Power Electron. 28(4), 1914-1926 (2013) https://doi.org/10.1109/TPEL.2012.2213273
  6. Yu, X., She, X., Zhou, X., et al.: Power management for dc microgrid enabled by solid-state transformer. IEEE Trans. Smart Grid.. 5(2), 954-965 (2014) https://doi.org/10.1109/TSG.2013.2277977
  7. Xu, S., Alex, Q., et al.: Current sensorless power balance strategy for DC/DC converters in a cascaded multilevel converter based solid state transformer. IEEE Trans. Power Electron. 29(1), 17-22 (2014) https://doi.org/10.1109/TPEL.2013.2256149
  8. Sun, Y., Gao, Z., Fu, C., et al.: A hybrid modular DC solid state transformer combining high efficiency and control flexibility. IEEE Trans. Power Electron. 35(4), 3434-3449 (2020) https://doi.org/10.1109/tpel.2019.2935029
  9. Zhao, X., Li, B., Fu, Q., et al.: DC solid state transformer based on three-level power module for interconnecting MV and LV DC distribution systems. IEEE Trans. Power Electron. 36(2), 1563-1577 (2021) https://doi.org/10.1109/tpel.2020.3007674
  10. Zhao, B., Song, Q., Liu, W., et al.: Overview of dual-active-bridge isolated bidirectional DC-DC converter for high-frequency-link power-conversion system. IEEE Trans. Power Electron. 29(8), 4091-4106 (2014) https://doi.org/10.1109/TPEL.2013.2289913
  11. Zhao, B., An, F., Song, Q., Yu, Z., Zeng, R.: Development and application of DC transformer based on dual-active-bridge. Zhongguo Dianji Gongcheng Xuebao/Proc. Chin. Soc. Electr. Eng. 41(01), 288-298 (2021)
  12. Inoue, S., Akagi, H.: A bidirectional isolated DC-DC converter as a core circuit of the next-generation medium-voltage power conversion system. IEEE Trans. Power Electron. 22(2), 535-542 (2007) https://doi.org/10.1109/TPEL.2006.889939
  13. Perez, M.A., Bernet, S., Rodriguez, J., et al.: Circuit topologies, modeling, control schemes, and applications of modular multi-level converters. IEEE Trans. Power Electron. 30(1), 4-17 (2015) https://doi.org/10.1109/TPEL.2014.2310127
  14. Shi, J., Luo, J., He, X.: Common-duty-ratio control of input-series output-parallel connected phase-shift full-bridge DC-DC converter modules. IEEE Trans. Power Electron. 26(11), 3318-3329 (2011) https://doi.org/10.1109/TPEL.2011.2142325
  15. Liu, J., Cheng, K.: New power sharing scheme with correlation control for input-parallel-output-series-based interleaved resonant inverters. Iet Power Electron. 7(5), 1266-1277 (2014) https://doi.org/10.1049/iet-pel.2013.0203
  16. Zhao, B., Zhao, Y., Wang, Y., et al.: Energy internet based on flexible medium-voltage DC distribution. Zhongguo Dianji Gongcheng Xuebao/Proc. Chin. Soc. Electr. Eng. 35(19), 4843-4851 (2015)
  17. Li, J., Zhao, B., Song, Q., et al.: DC voltage balance control strategy of high frequency link DC transformer in DC distribution system. Zhongguo Dianji Gongcheng Xuebao/Proc. Chin. Soc. Electr. Eng. 36(2), 327-334 (2016)
  18. Raja, A., Ramesh, G., Ned, M.: Active input-voltage and load-current sharing in input-series and output-parallel connected modular DC-DC Converters using dynamic input-voltage reference scheme. IEEE Trans. Power Electron. 19(6), 1462-1473 (2004) https://doi.org/10.1109/TPEL.2004.836671
  19. Zhang, H., Ren, C., Qin, W., et al.: Coordinated control strategy for a DC microgrid with two-level bus voltage. In: IEEE Conference on Industrial Electronics and Applications (ICIEA), pp 1712-1717 (2017)
  20. Zumel, P., Ortega, L., Lazaro, A., et al.: Modular dual-active bridge converter architecture. IEEE Trans. Ind. Appl. 52(3): 2444-2455 (2016) https://doi.org/10.1109/TIA.2016.2527723
  21. Li, F., Lin, Z., Qian, Z., et al.: A dual-window DC bus interacting method for DC microgrids hierarchical control scheme. IEEE Trans. Sustain. Energy 11(2), 652-661 (2020) https://doi.org/10.1109/tste.2019.2900617
  22. Li, F., Qin, W., Han, X., et al.: Hierarchical control strategy of hybrid slack terminals in DC micro-grid. In: 2018 IEEE Power & Energy Society General Meeting (PESGM), pp 1-5 (2018)