DOI QR코드

DOI QR Code

Performance improvement of hydraulic turbine generation system using subdivided finite set model predictive current control

  • Lee, Young Jae (Charging System Engineering Design Team, Hyundai Motor Company) ;
  • Bak, Yeongsu (Department of Electrical Energy Engineering, Keimyung University) ;
  • Lee, Kyo-Beum (Department of Electrical and Computer Engineering, Ajou University)
  • Received : 2021.12.30
  • Accepted : 2022.05.09
  • Published : 2022.08.20

Abstract

This paper proposes performance improvement of hydraulic turbine generation system (HTGS) using a subdivided finite set model predictive current control (SFS-MPCC). Recently, the differential pressure control valve (DPCV) is replaced by HTGS because of the frequent breakdown in DPCV caused by cavitation in the district heating systems. The HTGS consists of the hydraulic turbine, permanent magnet synchronous generator (PMSG), back-to-back (BTB) converter, and three-phase grid. Especially, BTB converter is composed of a generator-side inverter, DC-link capacitor, and grid-side inverter. In the generator-side inverter, a model predictive current control (MPCC) has been widely used because of its many advantages, such as robustness from parameter variation, fast dynamic response, and unnecessariness of gain tuning. The conventional MPCC uses only eight voltage vectors; thus, it makes a large current ripple, which is directly related to torque ripple. Therefore, to reduce the current and torque ripple, SFS-MPCC, which uses subdivided voltage vectors is proposed. An additional algorithm to reduce the calculation time is proposed because the subdivided voltage vectors increase the calculation time excessively. The effectiveness of the proposed SFS-MPCC is demonstrated by simulation and experimental results.

Keywords

Acknowledgement

This research was supported by Korea Electric Power Corporation (Grant number: R21XO01-11) and Korea Electric Power Research Institute (KEPRI) grant funded by the KEPCO(R19DA09, Development of power control technologies on DER to increase DER hosting capacity in distribution system).

References

  1. Cao, Y., Wei, W., Wu, L., Mei, S., Shahidehpour, M., Li, Z.: Decentralized operation of interdependent power distribution network and district heating network: a market-driven approach. IEEE Trans. Smart Grid 10(5), 5374-5585 (2019) https://doi.org/10.1109/tsg.2018.2880909
  2. Li, J., Lin, J., Song, Y., Xing, X., Fu, C.: Operation optimization of power to hydrogen and heat (P2HH) in ADN coordinated with the district heating network. IEEE Trans. Sustain. Energy 10(4), 1672-1683 (2019) https://doi.org/10.1109/tste.2018.2868827
  3. Quilumba, F.L., Lee, L.K., Lee, W.-J., Harding, A.: Improving hydraulic system energy efciency with high-performance hydraulic fluids. IEEE Trans. Ind. Appl. 50(2), 1313-1321 (2014) https://doi.org/10.1109/TIA.2013.2277517
  4. Jeon, S.-S., Lee, Y.J., Bak, Y., Lee, K.-B.: Hardware-simulator development and implementation for hydraulic turbine generation systems in a district heating system. Electronics 9(368), 1-11 (2020)
  5. Bak, Y., Lee, K.B.: Development of PCS to utilize differential pressure energy in district heating systems with reduced DC link voltage variation. J. Power Electron. 20(4), 1-10 (2020) https://doi.org/10.1007/s43236-019-00005-6
  6. Giosio, D.R., Henderson, A.D., Walker, J.M., Brandner, P.A.: Physics-based hydraulic turbine model for system dynamic studies. IEEE Trans. Power Syst. 32(2), 1161-1168 (2017) https://doi.org/10.1109/TPWRS.2016.2574330
  7. Liu, J., Xu, B., Chen, D., Li, J., Gao, X., Liu, G.: Grid-connection analysis of hydro-turbine generator unit with stochastic disturbance. IET Renew Power Gener. 13(3), 500-509 (2018) https://doi.org/10.1049/iet-rpg.2018.5678
  8. Lee, K.-B.: Advanced Power Electronics. Chap. 17. Munundang (2019)
  9. Tcai, A., Shin, H.-U., Lee, K.-B.: DC-link capacitor-current ripple reduction in DPWM-based back-to-back converters. IEEE Trans. Ind. Electron. 65(3), 1897-1907 (2018) https://doi.org/10.1109/tie.2017.2745453
  10. Lotfy Haridy, A., Ali Mohamed Abdelbasset, A.-A., Mohamed Hemeida, A., Elhalwany, Z.M.A.: Optimum controller design using the ant lion optimizer for PMSG driven by wind energy. J. Electr. Eng. Technol. 16, 367-380 (2021) https://doi.org/10.1007/s42835-020-00585-5
  11. Kang, Y.-R., Lee, T.H., Seo, H., Lim, D.-K.: Optimal design of IPMSM for electric bus using a sub-domain algorithm with dynamic area sampling. J. Electr. Eng. Technol. 16, 3169-3178 (2021) https://doi.org/10.1007/s42835-021-00895-2
  12. Ndwali, P.K., Njiri, J.G., Wanjiru, E.M.: Economic model predictive control of microgrid connected photovoltaic-diesel generator backup energy system considering demand side management. J. Electr. Eng. Technol. 16, 2297-2312 (2021) https://doi.org/10.1007/s42835-021-00801-w
  13. Ali, M. A., Barakat, M. M., Abokhalaf, M. M., Fadel. Y. H., Kandil, M., Rasmy, M. W., Ali, O. N., Besheer A. H., Emara, H. M., Bahgat, A.: Micro-grid Monitoring and Supervision: Web-based SCADA Approach. J. Electr. Eng. Technol. 16, 2313-2331 (2021) https://doi.org/10.1007/s42835-021-00762-0
  14. Pangedaiah, B., Obulesu, Y.P., Kota, V.R.: A new architecture topology for back to back grid-connected hybrid wind and PV system. J. Electr. Eng. Technol. 16, 1457-1467 (2021) https://doi.org/10.1007/s42835-021-00685-w
  15. Verrilli, F., Srinivasan, S., Gambino, G., Canelli, M., Himanka, M., Vecchio, C.D., Sasso, M., Glielmo, L.: Model predictive control-based optimal operations of district heating system with thermal energy storage and flexible loads. IEEE Trans. Autom. Sci. Eng. 14(2), 547-557 (2017) https://doi.org/10.1109/TASE.2016.2618948
  16. Kouro, S., Cortes, P., Vargas, R., Ammann, U., Rodriguez, J.: Model predictive control-a simple and powerful method to control power converters. IEEE Trans. Ind. Electron. 56(6), 1826-1838 (2009) https://doi.org/10.1109/TIE.2008.2008349
  17. Zhang, Z., Li, Z., Kazmierkowski, M.P., Rodriguez, J., Kennel, R.: Robust predictive control of three-level npc back-to-back power converter PMSG wind turbine systems with revised predictions. IEEE Trans. Power Electron. 33(11), 9588-9598 (2018) https://doi.org/10.1109/tpel.2018.2796093
  18. Young, H.A., Perez, M.A., Rodriguez, J.: Analysis of finite-control-set model predictive current control with model parameter mismatch in a three-phase inverter. IEEE Trans. Ind. Electron. 63(5), 3100-3107 (2016) https://doi.org/10.1109/TIE.2016.2515072
  19. Yuan, X., Zhang, S., Zhang, C.: Enhanced Robust Deadbeat Predictive Current Control for PMSM Drives. IEEE Access 7, 148218-148230 (2016) https://doi.org/10.1109/access.2019.2946972
  20. Yuan, X., Zhang, S., Zhang, C.: Improved model predictive current control for SPMSM drives with parameter mismatch. IEEE Trans. Ind. Electron. 67(2), 852-862 (2020) https://doi.org/10.1109/tie.2019.2901648
  21. Heo, J., Chwa, D.: Robust tracking control using integral sliding mode observer for quadrotors considering motor and propeller dynamics and disturbances. J. Electr. Eng. Technol. 16, 3247-3260 (2021) https://doi.org/10.1007/s42835-021-00909-z
  22. Hafez, A.A., Mahmoud, A.A., Yousef, A.M.: Robust and intelligent control for single-stage grid-connected modular multilevel converter in PV applications. J. Electr. Eng. Technol. 16, 917-931 (2021) https://doi.org/10.1007/s42835-020-00639-8
  23. Askari, M., Moghavvemi, M., Almurib, H.A.F., Muttaqi, K.M.: Multivariable offset-free model predictive control for quadruple tanks system. IEEE Trans. Ind. Appli. 52(2), 1882-1890 (2016) https://doi.org/10.1109/TIA.2015.2501761
  24. Bak, Y., Jang, Y., Lee, K.-B.: Torque predictive control for permanent magnet synchronous motor drives using indirect matrix converter. J. Power Electron. 19(6), 1536-1543 (2019) https://doi.org/10.6113/jpe.2019.19.6.1536
  25. Liu, J., Gong, C., Han, Z., Yu, H.: IPMSM model predictive control in flux-weakening operation using an improved algorithm. IEEE Trans. Ind. Electron. 60(12), 9378-9387 (2018)
  26. Mirzaeva, G., Goodwin, G.C., McGrath, B.P., Teixeira, C., Rivera, M.E.: A generalized MPC framework for the design and comparison of VSI current controllers. IEEE Trans. Ind. Electron. 63(10), 5816-5826 (2016) https://doi.org/10.1109/TIE.2016.2578283
  27. Li, Z., An, J.-F., Zhang, Q.-S., Sun, H.-X.: Design of current predictive control of permanent magnet synchronous linear motor based on double disturbance compensator. J. Electr. Eng. Technol. 17, 1257-1269 (2022) https://doi.org/10.1007/s42835-021-00990-4
  28. Du, W., Li, W., Lu, E., Sheng, L., Chen, Y., Jiang, S.: An improved model predictive torque control strategy of a shearer semi-direct permanent magnet synchronous motor based on duty cycle. J. Electr. Eng. Technol. 16, 2585-2597 (2021) https://doi.org/10.1007/s42835-021-00780-y
  29. Guzman, A.N., Gennaro, S.D., Dominguez, J.R., Lua, C.A., Loukianov, A.G., Castillo-Toledo, B.: Enhanced discrete-time modeling via variational integrators and digital controller design for ground vehicles. IEEE Trans. Ind. Electron. 63(10), 6375-6385 (2016) https://doi.org/10.1109/TIE.2016.2578841
  30. Cortes, P., Rodriguez, J., Silva, C., Flores, A.: Delay compensation in model predictive current control of a three-phase inverter. IEEE Trans. Ind. Electron. 59(2), 1323-1325 (2012) https://doi.org/10.1109/TIE.2011.2157284
  31. Jin, T., Shen, X., Su, T., Flesch, R.C.C.: Model predictive voltage control based on finite control set with computation time delay compensation for PV systems. IEEE Trans. Energy Convers. 34(1), 330-338 (2019) https://doi.org/10.1109/tec.2018.2876619
  32. Castello, J., Espi, J.M., Garcia-Gil, R.: A new generalized robust predictive current control for grid-connected inverters compensates antialiasing filters delay. IEEE Trans. Ind. Electron. 63(7), 4485-4494 (2016) https://doi.org/10.1109/TIE.2015.2497303
  33. Gao, J., Gong, C., Li, W., Liu, J.: Novel compensation strategy for calculation delay of finite control set model predictive current control in PMSM. IEEE Trans. Ind. Electron. 67(7), 5816-5819 (2020) https://doi.org/10.1109/tie.2019.2934060
  34. Sung, S., Kang, H.J., Shim, H., Shin, K.-H., Choi, J.-Y.: Compensation technique for delay times of various feedback filters in a three-phase control system for synchronous machines. J. Electr. Eng. Technol. 16, 3069-3080 (2021) https://doi.org/10.1007/s42835-021-00831-4