DOI QR코드

DOI QR Code

Fractional-order proportional-integral super twisting sliding mode controller for wind energy conversion system equipped with doubly fed induction generator

  • Gasmi, Hamza (Laboratoire de Controle Avance (LABCAV), Department of Electronic and Telecommunication, Universite 8 Mai 1945 Guelma) ;
  • Mendaci, Sofane (Department of Electrical Engineering and Automation, Universite 8 Mai 1945 Guelma) ;
  • Laifa, Sami (Laboratoire de Controle Avance (LABCAV), Department of Electronic and Telecommunication, Universite 8 Mai 1945 Guelma) ;
  • Kantas, Walid (Department of Electrical Engineering and Automation, Universite 8 Mai 1945 Guelma) ;
  • Benbouhenni, Habib (Faculty of Engineering and Architecture, Department of Electrical & Electronics Engineering, Nisantasi University)
  • Received : 2021.09.14
  • Accepted : 2022.04.04
  • Published : 2022.08.20

Abstract

Modeling, control, and simulation of a wind energy conversion system equipped with a doubly fed induction generator are presented in this study. A fractional-order proportional-integral super twisting sliding mode controller (FOPI-STSMC) is used to ensure maximum power point tracking and control the stator active and reactive powers injected into the grid. A comparison of the simulation results provided by the FOPI-STSMC controller and conventional sliding mode controller is performed using MATLAB/Simulink software. The proposed FOPI-STSMC controller significantly reduced chattering while ensuring satisfactory robustness against parametric variations.

Keywords

Acknowledgement

This work is supported by the Ministry of Higher Education and Scientific Research of Algeria as part of a research project (PRFU No, A01L07UN240120200002). The authors would like to thank Dr. Khalil Tamersit for his valuable assistance.

References

  1. Van-Tung, P., Hong-Hee, L., Tae-Won, C.: An effective rotor current controller for unbalanced stand-alone DFIG systems in the rotor reference frame. J. Power Electron. 10(6), 724-732 (2010). https://doi.org/10.6113/JPE.2010.10.6.724
  2. Yun-Seong, K., Aditya, M., Dong-Jun, W.: Comparison of various methods to mitigate the flicker level of DFIG in considering the effect of grid conditions. J. Power Electron. 9(4), 612-622 (2009). https://doi.org/10.6113/JPE.2009.9.4.612
  3. Abad, G., Lopez, J., Rodriguez, M.A., Marroyo, L., Iwanski, G.: Doubly fed induction machine: modeling and control for wind energy generation, New Jersey, United States (2011)
  4. Heng, N., Chenwen, C., Yipeng, S.: Coordinated control of DFIG system based on repetitive control strategy under generalized harmonic grid voltages. J. Power Electron. 17(3), 733-743 (2017). https://doi.org/10.6113/JPE.2019.17.3.733
  5. Najib, E., Aziz, D., Abdelaziz, E., Mohammed, T., Youness, E., Khalid, M., Badre, B.: Direct torque control of doubly fed induction motor using three-level NPC inverter. Protect. Control Mod. Power Syst. 17(4), 1-9 (2019). https://doi.org/10.1186/s41601-019-0131-7
  6. Amrane, F., Chaiba, A., Babes, B., Mekhilef, S.: Design and implementation of high performance field oriented control for grid-connected doubly fed induction generator via hysteresis rotor current controller. Rev. Roum. Sci. Tech. Electrotech. Et. Energy 61(4), 319-324 (2016)
  7. Sung-Tak, J., Sol-Bin, L., Yong-Bae, P., Kyo-Beum, L.: Direct power control of a DFIG in wind turbines to improve dynamic responses. J. Power Electron. 9(5), 781-790 (2009). https://doi.org/10.6113/JPE.2009.9.5.781
  8. Djeriri, Y.: Lyapunov-based robust power controllers for a doubly fed induction generator. IJEEE 16(4), 551-558 (2020). https://doi.org/10.22068/IJEEE.16.4.551
  9. Alhato, M., Ibrahim, M., Rezk, H., Bouallegue, S.: An enhanced dc-link voltage response for wind-driven doubly fed induction generator using adaptive fuzzy extended state observer and sliding mode control. Mathematics 9(9), 1-18 (2021). https://doi.org/10.3390/math9090963
  10. Djilali, L., Sanchez, E., Belkheiri, M.: Neural sliding mode field oriented control for DFIG based wind turbine. In: 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 2087-2092 (2017)
  11. Evangelista, C., Valenciaga, F., Puleston, P.: Active and reactive power control for wind turbine based on a MIMO 2-sliding mode algorithm with variable gains. IEEE Trans. Energy Convers. 28(3), 682-689 (2013). https://doi.org/10.1109/TEC.2013.2272244
  12. Djilali, L., Badillo-Olvera, A., Yuliana Rios, Y., Lopez-Beltran, H., Saihi, L.: Neural high order sliding mode control for doubly fed induction generator based wind turbines. IEEE Lat. Am. Trans. 20(2), 223-232 (2022). https://doi.org/10.1109/TLA.2022.9661461
  13. Tamaarat, A., Benakcha, A.: Performance of PI controller for control of active and reactive power in DFIG operating in a grid-connected variable speed wind energy conversion system. Front. Energy. 8(3), 371-378 (2014). https://doi.org/10.1007/s11708-014-0318-6
  14. Yamamoto, M., Motoyoshi, O.: Active and reactive power control for doubly-fed wound rotor induction generator. IEEE Trans. Power Electron. 6(4), 624-629 (1991). https://doi.org/10.1109/63.97761
  15. Sabanovic, A.: Variable structure systems with sliding modes in motion control-a aurvey. IEEE Trans. Ind. Inf. 7(2), 212-223 (2011). https://doi.org/10.1109/TII.2011.2123907
  16. Utkin, V., Guldner, J., Shi, J. (2009) Sliding Mode Control in Electro-Mechanical Systems, vol. 34. CRC Press, Boca Raton. https://doi.org/10.1201/9781420065619
  17. Shang, L., Hu, J.: Sliding-mode-based direct power control of grid-connected wind-turbine-driven doubly fed induction generators under unbalanced grid voltage vonditions. IEEE Trans. Energy Convers. 27(2), 362-373 (2012). https://doi.org/10.1109/TEC.2011.2180389
  18. Merabet, A., Ahmed, K.T., Ibrahim, H., Beguenane, R.: Implementation of sliding mode control system for generator and grid sides control of wind energy conversion system. IEEE Trans. Sustain. Energy. 7(3), 1-9 (2016). https://doi.org/10.1109/TSTE.2016.2537646
  19. Utkin, V., Lee, H.: Chattering problem in sliding mode control systems. IFAC Proc. 39(5), 1 (2006). https://doi.org/10.3182/20060607-3-it-3902.00003
  20. Kelkoul, B., Boumediene, A.: Stability analysis and study between classical sliding mode control (SMC) and super twisting algorithm (STA) for doubly fed induction generator (DFIG) under wind turbine. Energy (2021). https://doi.org/10.1016/j.energy.2020.118871
  21. Adel, M., Ahmed, Al., Mahdi, D., Aman, A., Hisham, E.: Integral sliding mode control for back-to-back converter of DFIG wind turbine system. J. Eng. 2020(10), 834-842 (2020). https://doi.org/10.1049/joe.2020.0113
  22. Liu, Y., Zhijie, W., Linyun, X., Jie, W., Xiuchen, J.: DFIG wind turbine sliding mode control with exponential reaching law under variable wind speed. Int. J. Electr. Power Energy Syst. 96, 253-260 (2018). https://doi.org/10.1016/j.ijepes.2017.10.018
  23. Junejo, A.K., Xu, W., Mu, C., Ismail, M.M., Liu, Y.: Adaptive speed control of PMSM drive system based a new sliding-mode reaching law. IEEE Trans. Power Electron. 35(11), 12110-12121 (2020). https://doi.org/10.1109/TPEL.2020.2986893
  24. Saghafnia, A., Ping, H.W., Uddin, M.N., Gaeid, K.S.: Adaptive fuzzy sliding-mode control into chattering-free im drive. IEEE Trans. Ind. Appl. 51(1), 692-701 (2015). https://doi.org/10.1109/TIA.2014.2328711
  25. Orlowska-Kowalska, T., Kaminski, M., Szabat, K.: Implementation of a sliding-mode controller with an integral function and fuzzy gain value for the electrical drive with an elastic joint. IEEE Trans. Ind. Electron. 57(4), 1309-1317 (2010). https://doi.org/10.1109/tie.2009.2030823
  26. Bounar, N., Labdai, S., Boulkroune, A.: PSO-GSA based fuzzy sliding mode controller for DFIG-based wind turbine. ISA Trans. 85, 177-188 (2019). https://doi.org/10.1016/j.isatra.2018.10.020
  27. Ur Rehman, A., Ali, N., Khan, O., Pervaiz, M.: A disturbance observer based sliding mode control for variable speed wind turbine. IETE J. Res. (2019). https://doi.org/10.1080/03772063.2019.1676661
  28. Xiahou, K., Liu, Y., Wang, L., Li, M.S., Wu, Q.H.: Control of DFIG's rotor-side converter with decoupling of current loops using observer-based fractional-order sliding-mode regulators. IEEE Access. 7, 163412-1634220 (2019). https://doi.org/10.1109/ACCESS.2019.2952589
  29. Sami, I., Ullah, S., Ali, Z., Ullah, N., Ro, J.-S.: A super twisting fractional order terminal sliding mode control for DFIG-based wind energy conversion system. Energies 13(9), 1-20 (2020). https://doi.org/10.3390/en13092158
  30. Bouyekni, A., Taleb, R., Boudjema, Z., Kahal, H.: A second-order continuous sliding mode based on DPC for wind-turbine-driven DFIG. Elektrotehniski Vestnik. 25(1-2), 29-36 (2018)
  31. Tria, F.Z., Srairi, K., Benchouia, M.T., Benbouzid, M.E.H.: An integral sliding mode controller with super-twisting algorithm for direct power control of wind generator based on a doubly fed induction generator. Int. J. Syst. Assur. Eng. Manag. 8(4), 762-769 (2017). https://doi.org/10.1007/s13198-017-0597-5
  32. Benbouhenni, H., Boudjema, Z., Belaidi, A.: DPC based on ANFIS super-twisting sliding mode algorithm of a doubly-fed induction generator for wind energy system. Journal Europeen des Systemes Automatises 53(1), 69-80 (2019). https://doi.org/10.18280/jesa.530109
  33. Sadeghi, R., Madani, S.M., Ataei, M., Agha Kashkooli, M.R., Ademi, S.: Super-twisting sliding mode direct power control of a brushless doubly fed induction generator. IEEE Trans. Ind. Electron. 65(11), 9147-9156 (2018). https://doi.org/10.1109/TIE.2018.2818672
  34. Benbouhenni, H., Bizon, N.: A synergetic sliding mode controller applied to direct field-oriented control of induction generator-based variable speed dual-Rotor wind turbines. Energies 14(15), 1-17 (2021). https://doi.org/10.3390/en14154437
  35. Benbouhenni, H., Bizon, N.: Improved rotor flux and torque control based on the third-order sliding mode scheme applied to the asynchronous generator for the single-rotor wind turbine. Mathematics 9(18), 1-16 (2021). https://doi.org/10.3390/math9182297
  36. Benbouhenni, H., Bizon, N.: Terminal synergetic control for direct active and reactive powers in asynchronous generator-based dual-rotor wind power systems. Electronics 10(16), 1-23 (2021). https://doi.org/10.3390/electronics10161880
  37. Chen, H., Xie, W., Chen, X., Han, J., Ait-Ahmed, N., Zhou, Z., Tang, T., Benbouzid, M.: Fractional-order PI control of DFIG-based tidal stream Turbine. J. Mar. Sci. Eng. 8(5), 1-23 (2020). https://doi.org/10.3390/jmse8050309
  38. Mosaad, M.I., Abu-Siada, A., El-Naggar, M.F.: Application of superconductors to improve the performance of DFIG-based WECS. IEEE Access. 7, 103760-103769 (2019). https://doi.org/10.1109/ACCESS.2019.2929261
  39. Ali, Y., Nusret, T., Atherton, D.P.: Fractional order PI pontroller design for time delay systems. IFAC-PapersOnLine. 49(10), 94-99 (2016). https://doi.org/10.1016/j.ifacol.2016.07.487
  40. Afghoul, H., Chikouche, D., Krim, F., Babes, B., Beddar, A.: Implementation of fractional-order integral-plus-proportional controller to enhance the power quality of an electrical grid. Electr. Power Compon. Syst. 44(9), 1018-1028 (2016). https://doi.org/10.1080/15325008.2016.1147509
  41. Benbouhenni, H., Bizon, N.: Third-order sliding mode applied to the direct field-oriented control of the asynchronous generator for variable-speed contra-rotating wind turbine generation systems. Energies 14(18), 1-20 (2021). https://doi.org/10.3390/en14185877
  42. Benbouhenni, H., Bizon, N.: Advanced direct vector control method for optimizing the operation of a double-powered induction generator-based dual-rotor wind turbine system. Mathematics. 9(19), 1-36 (2021). https://doi.org/10.3390/math9192403
  43. Habib, B.: Sliding mode with neural network regulateur for DFIG using two-level NPWM strategy. Iran. J. Electr. Electron. Eng. 15(3), 411-419 (2019)
  44. Edet, E., Katebi, R.: On fractional predictive PID controller design method. IFAC-Pap. Online. 50(1), 8555-8560 (2017). https://doi.org/10.1016/j.ifacol.2017.08.1416
  45. Pradhan, R., Majhi, S.K., Pradhan, J.K., Pati, B.B.: Optimal fractional order PID controller design using Ant Lion Optimizer. Ain Shams Eng. J. 11(2), 281-291 (2020). https://doi.org/10.1016/j.asej.2019.10.005
  46. Oussama, M., Abdelghani, C., Lakhdar, C.: Fractional order PID design for MPPT-Pitch angle control of wind turbine using bat algorithm. Adv. Model. Anal. A 56(2), 35-42 (2019). https://doi.org/10.18280/ama_a.562-402
  47. Hamouda, N., Babes, B., Boutaghane, A., Kahla, S., Mezaache, M.: Optimal tuning of PIλDμ controller for PMDC motor speed control using ant colony optimization algorithm for enhancing robustness of WFSs. In: 1st International Conference on Communications, Control Systems and Signal Processing (2020). https://doi.org/10.1109/CCSSP49278.2020.9151609
  48. Hamouda, N., Babes, B., Hamouda, C., Kahla, S., Ellinger, T., Petzoldt, J.: Optimal tuning of fractional order proportional-integral-derivative controller for wire feeder system using ant colony optimization. J. Eur. des Syst. Autom. 53(2), 157-166 (2020). https://doi.org/10.18280/jesa.530201
  49. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN'95-International Conference on Neural Networks, pp 1942-1948 (1995). https://doi.org/10.1109/icnn.1995.488968
  50. Laina, R., Ez-Zahra Lamzouri, F., Boufounas, E.M., El Amrani, A., Boumhidi, I.: Intelligent control of a DFIG wind turbine using a PSO evolutionary algorithm. Procedia Comput. Sci. 127, 471-480 (2018). https://doi.org/10.1016/j.procs.2018.01.145
  51. Boudjehem, D., Boudjehem, B.: Improved heterogeneous particle swarm optimization. J. Inf. Optim. Sci. 38(3-4), 481-499 (2017). https://doi.org/10.1080/02522667.2016.1224467
  52. Sai Rayala, S., Ashok Kumar, N.: Particle swarm optimization for robot target tracking application. Mater. Today Proc. (2020). https://doi.org/10.1016/j.matpr.2020.05.660
  53. Yaichi, I., Semmah, A., Wira, P., Djeriri, Y.: Super-twisting sliding mode control of a doubly-fed induction generator based on the SVM strategy. Period. Polytech. Electr. Eng. Comput. Sci. 63(3), 178-190 (2019). https://doi.org/10.3311/PPee.13726
  54. Mahfoud, S., Derouich, A., Iqbal, A., El Ouanjli, N.: Ant-colony optimization-direct torque control for a doubly fed induction motor: an experimental validation. Energy Rep. 8, 81-98 (2022). https://doi.org/10.1016/j.egyr.2021.11.239
  55. Ayrira, W., Ourahoua, M., El Hassounia, B., Haddib, A.: Direct torque control improvement of a variable speed DFIG based on a fuzzy inference system. Math. Comput. Simul. 167, 308-324 (2020). https://doi.org/10.1016/j.matcom.2018.05.014
  56. Boudjema, Z., Meroufel, A., Djerriri, Y., Bounadja, E.: Fuzzy sliding mode control of a doubly fed induction generator for energy conversion. Carpath. J. Electron. Comput. Eng. 6(2), 7-14 (2013)
  57. Beniss, M.A., El Moussaoui, H., Lamhamdi, T., El Markhi, H.: Improvement of power quality injected into the grid by using a FOSMC-DPC for doubly fed induction generator. Int. J. Intell. Eng. Syst. 14(2), 556-567 (2021). https://doi.org/10.22266/ijies2021.043050
  58. Quan, Y., Hang, L., He, Y., Zhang, Y.: Multi-resonant-based sliding mode control of DFIG-based wind system under unbalanced and harmonic network conditions. Appl. Sci. (2019). https://doi.org/10.3390/app9061124
  59. Boulaam, K., Mekhilef, A.: Output power control of a variable wind energy conversion system. Rev. Sci. Tech. Electrotech. Et. Energ. 62(2), 197-202 (2017)
  60. Zeghdi, Z., Barazane, L., Bekakra, Y., Larbi, A.: Improved backstepping control of a DFIG based wind energy conversion system using ant lion optimizer algorithm. Period. Polytech. Electr. Eng. Comput. Sci. 66(1), 43-59 (2022). https://doi.org/10.3311//PPee.18716
  61. El Ouanjli, N., Motahhir, S., Derouich, A., El Ghzizal, A., Chebabhi, A., Taoussi, M.: Improved DTC strategy of doubly fed induction motor using fuzzy logic controller. Energy Rep. 5, 271-279 (2019). https://doi.org/10.1016/j.egyr.2019.02.001
  62. El Ouanjli, N., Aziz, D., El Ghzizal, A., Mohammed, T., Youness, E., Khalid, M., Badre, B.: Direct torque control of doubly fed induction motor using three-level NPC inverter. Protect. Control Mod. Power Syst. 17(4), 1-9 (2019). https://doi.org/10.1186/s41601-019-0131-7
  63. Boudjema, Z., Taleb, R., Djerriri, Y., Yahdou, A.: A novel direct torque control using second order continuous sliding mode of a doubly fed induction generator for a wind energy conversion system. Turk. J. Electr. Eng. Comput. Sci. 25(2), 965-975 (2017). https://doi.org/10.3906/elk-1510-89
  64. Yahdou, A., Hemici, B., Boudjema, Z.: Second order sliding mode control of a dual-rotor wind turbine system by employing a matrix converter. J. Electr. Eng. 16(3), 1-11 (2016)
  65. Yusof, N.A., Razali, A.M., Karim, K.A., Sutikno, T., Jidin, A.: A Concept of virtual-flux direct power control of three-phase AC-DC converter. Int. J. Power Electron. Drive Syst. 8(4), 1776-1784 (2017). https://doi.org/10.11591/ijpeds.v8i4.pp1776-1784
  66. Hamid, C., Aziz, D., Seif Eddine, C., Othmane, Z., Mohammed, T., Hasnae, E.: Integral sliding mode control for DFIG based WECS with MPPT based on artificial neural network under a real wind profile. Energy Rep. 7, 4809-4824 (2021). https://doi.org/10.1016/j.egyr.2021.07.066