DOI QR코드

DOI QR Code

Review of wide band-gap technology: power device, gate driver, and converter design

  • Received : 2022.01.03
  • Accepted : 2022.05.16
  • Published : 2022.08.20

Abstract

This paper reviewed the state-of-the-art wide band-gap (WBG) technology from material level to system level. The properties of semiconductor materials, i.e., silicon carbide and gallium nitride, were investigated. The electrical characteristics of commercial power devices, which include static and dynamic performances, were assessed, and compared. The design requirements of WBG gate drivers were then underpinned, and various gate driver topologies were reviewed. Finally, their implementation in power electronic converters and performances were evaluated.

Keywords

Acknowledgement

This work was supported in part by the Ministry of Higher Education Malaysia under Grant FRGS/1/2018/TK04/APU/03/2 and in part by Asia Pacific University of Technology and Innovation under Grant APURDG/05/2019.

References

  1. Millan, J., Godignon, P., Perpina, X., Perez-Tomas, A., Rebollo, J.: A survey of wide bandgap power semiconductor devices. IEEE Trans. Power Electron. 29(5), 2155-2163 (2014) https://doi.org/10.1109/TPEL.2013.2268900
  2. Chen, J., Du, X., Luo, Q., Zhang, X., Sun, P., Zhou, L.: A review of switching oscillations of wide bandgap semiconductor devices. IEEE Trans. on Power Electron. 35(12), 13182-13199 (2020) https://doi.org/10.1109/tpel.2020.2995778
  3. Mantooth, H.A., Glover, M.D., Shepherd, P.: Wide bandgap technologies and their implications on miniaturizing power electronic systems. IEEE J. Emerg. Sel. Topics Power Electron. 2(3), 374-385 (2014) https://doi.org/10.1109/jestpe.2014.2313511
  4. Gonzalez, J.O., Wu, R., Jahdi, S., Alatise, O.: Performance and reliability review of 650 V and 900 V silicon and SiC devices: MOSFETs, Cascode JFETs and IGBTs. IEEE Trans. Ind. Electron. 67(9), 7375-7385 (2020) https://doi.org/10.1109/tie.2019.2945299
  5. Jones, E.A., Wang, F.F., Costinett, D.: Review of commercial GaN power devices and GaN-Based converter design challenges. IEEE J. Emerg. Sel. Topics Power Electron. 4(3), 707-719 (2016) https://doi.org/10.1109/JESTPE.2016.2582685
  6. She, X., Huang, A.Q., Lucia, O., Ozpineci, B.: Review of silicon carbide power devices and their applications. IEEE Trans. Ind. Electron. 64(10), 8193-8205 (2017) https://doi.org/10.1109/TIE.2017.2652401
  7. ROHM Application Note 14103EBY01, "SiC Power Devices and Modules," [online] Available: http://rohmfs.rohm.com/en/products/databook/applinote/discrete/sic/common/sicappli-e.pdf.
  8. Wellmann, P.J.: Power electronic semiconductor materials for automotive and energy saving applications - SiC, GaN, Ga2O3, and diamond. J. Inorg. General Chem. 643(21), 1312-1322 (2017)
  9. Shenai, K., Scott, R.S., Baliga, B.J.: Optimum semiconductors for high-power electronics. IEEE Trans. Electron Devices. 36(9), 1811-1823 (1989) https://doi.org/10.1109/16.34247
  10. Infneon IPW65R060CFD7 datasheet, [online] Available: https://www.infineon.com/
  11. Infneon IMW65R057M1H datasheet, [online] Available: https://www.infineon.com/
  12. UnitedSiC Semiconductor UJ3C065080K3S datasheet, [online] Available: https://unitedsic.com
  13. Transphorm TP65H050G4WS datasheet, [online] Available: https://www.transphormusa.com/en
  14. GaN Systems, GS66508B-TR datasheet, [online] Available: https://gansystems.com
  15. Sun, B.: Does GaN Have a Body Diode? - Understanding the Third Quadrant Operation of GaN. Application Report SNOAA36, Texas Instruments, February 2019
  16. Ravinchandra, K., Freddy, T.K.S., Thiruchelvam, V.: Review of Electrical Characteristics for Wide Bandgap Power Devices. 2021 IEEE 12th Energy Conversion Congress & Exposition - Asia (ECCE-Asia), 963-966 (2021)
  17. Zhang, Z., Wang, F., Tolbert, L.M., Blalock, B.J.: Active Gate Driver for Crosstalk Suppression of SiC Devices in a Phase-Leg Configuration. IEEE Trans. Power Electron. 29(4), 1986-1997 (2014) https://doi.org/10.1109/TPEL.2013.2268058
  18. EPC White Paper WP008, "eGaN® FET Drivers and Layout Considerations," https://epc-co.com/epc/Portals/0/epc/documents/papers/eGaN%20FET%20Drivers%20and%20Layout%20Considerations.pdf
  19. Texas Instruments Application Report SLUA863B, " Understanding the Short Circuit Protection for Silicon Carbide MOSFETs," https://www.ti.com/lit/an/slua863b/slua863b.pdf?ts=1607242656080&ref_url=https%253A%252F%252Fwww.google.com%252F
  20. Sadik, D., et al.: Short-circuit protection circuits for silicon-carbide power transistors. IEEE Trans. Ind. Electron. 63(4), 1995-2004 (2016) https://doi.org/10.1109/TIE.2015.2506628
  21. Wang, Z., Shi, X., Xue, Y., Tolbert, L.M., Wang, F., Blalock, B.J.: Design and performance evaluation of overcurrent protection schemes for silicon carbide (SiC) power MOSFETs. IEEE Trans. Ind. Electron. 61(10), 5570-5581 (2014) https://doi.org/10.1109/TIE.2013.2297304
  22. Wang, J., Chung, H.S.: A Novel RCD level shifter for elimination of spurious turn-on in the bridge-leg configuration. IEEE Trans. Power Electron. 30(2), 976-984 (2015) https://doi.org/10.1109/TPEL.2014.2310898
  23. Tang, H., Shu-Hung Chung, H., Wing-To Fan, J., Shun-Cheung Yeung, R., Wing-Hong Lau, R.: Passive resonant level shifter for suppression of crosstalk effect and reduction of body diode loss of SiC MOSFETs in bridge legs. IEEE Trans. Power Electron. 35(7), 7204-7225 (2020) https://doi.org/10.1109/tpel.2019.2957985
  24. Dymond, H.C.P., et al.: A 6.7-GHz active gate driver for GaN FETs to combat overshoot, ringing, and EMI. IEEE Trans. Power Electron. 33(1), 581-594 (2018) https://doi.org/10.1109/TPEL.2017.2669879
  25. EPC Application Note AN015, "Introducing a Family of eGaN® FETs for Multi-Megahertz Hard Switching Applications," https://epc-co.com/epc/Portals/0/epc/documents/product-training/AN015%20eGaN%20FETs%20for%20Multi-Megahertz%20Applications.pdf
  26. Zhang, Z.-L., Dong, Z., Hu, D.-D., Zou, X.-W., Ren, X.: Three-level gate drivers for eGaN HEMTs in resonant converters. IEEE Trans. Power Electron. 32(7), 5527-5538 (2017) https://doi.org/10.1109/TPEL.2016.2606443
  27. Xie, Y., Brohlin, P.: Optimizing GaN performance with an integrated drive." Texas Instruments, March 2016
  28. EPC2112 datasheet datasheet, [online] Available: http://epc-co.com
  29. Seidel, A., Wicht, B.: Integrated gate drivers based on high-voltage energy storing for GaN transistors. IEEE J. Solid-State Circuits. 53(12), 3446-3454 (2018) https://doi.org/10.1109/JSSC.2018.2866948
  30. Zhang, Z., Dix, J., Wang, F.F., Blalock, B.J., Costinett, D., Tolbert, L.M.: Intelligent gate drive for fast switching and crosstalk suppression of SiC devices. IEEE Trans. Power Electron. 32(12), 9319-9332 (2017) https://doi.org/10.1109/TPEL.2017.2655496
  31. Gao, F., Zhou, Q., Wang, P., Zhang, C.: A gate driver of SiC MOSFET for suppressing the negative voltage spikes in a bridge circuit. IEEE Trans. Power Electron. 33(3), 2339-2353 (2018) https://doi.org/10.1109/TPEL.2017.2690938
  32. Li, H., et al.: Assist gate driver circuit on crosstalk suppression for SiC MOSFET bridge configuration. IEEE J. Emerg. Sel. Topics Power Electron. 8(2), 1611-1621 (2020) https://doi.org/10.1109/jestpe.2019.2914180
  33. Zhang, B., Xie, S., Xu, J., Qian, Q., Zhang, Z., Xu, K.: A magnetic coupling based gate driver for crosstalk suppression of SiC MOSFETs. IEEE Trans. Ind. Electron. 64(11), 9052-9063 (2017) https://doi.org/10.1109/TIE.2017.2736500
  34. Wang, J., Liu, D., Dymond, H.C.P., Dalton, J.J.O., Stark, B.H.: Crosstalk suppression in a 650-V GaN FET bridge leg converter using 6.7-GHz active gate driver. Proc. IEEE Energy Convers. Congr. Expo., Cincinnati, OH, USA. 1955-1960 (2017)
  35. Chen, Y., Wang, R., Liu, X., Kang, Y.: Gate-drive power supply with decayed negative voltage to solve crosstalk problem of GaN synchronous buck converter. IEEE Trans. Power Electron. 36(1), 6-11 (2021) https://doi.org/10.1109/tpel.2020.3000047
  36. Chennu, J.V.P.S., Maheshwari, R., Li, H.: New resonant gate driver circuit for high-frequency application of silicon carbide MOSFETs. IEEE Trans. Ind. Electron. 64(10), 8277-8287 (2017) https://doi.org/10.1109/TIE.2017.2677307
  37. Anthony, P., McNeill, N., Holliday, D.: High-speed resonant gate driver with controlled peak gate voltage for silicon carbide MOSFETs. IEEE Trans. Ind. Appl. 50(1), 573-583 (2014) https://doi.org/10.1109/TIA.2013.2266311
  38. Gu, L., Tong, Z., Liang, W., Rivas-Davila, J.: A multiresonant gate driver for high-frequency resonant converters. IEEE Trans. Ind. Electron. 67(2), 1405-1414 (2020) https://doi.org/10.1109/tie.2019.2899557
  39. Wang, B., Tipirneni, N., Riva, M., Monti, A., Simin, G., Santi, E.: An efficient high-frequency drive circuit for GaN power HFETs. IEEE Trans. Ind. Appl. 45(2), 843-853 (2009) https://doi.org/10.1109/TIA.2009.2013578
  40. Long, Y., Zhang, W., Costinett, D., Blalock, B.B., Jenkins, L.L.: A high-frequency resonant gate driver for enhancement-mode GaN power devices. Proc. IEEE Appl. Power Electron. Conf. Expo. 1961-1965 (2015)
  41. Sun, B., Zhang, Z., Andersen, M.A.E.: A comparison review of the resonant gate driver in the silicon MOSFET and the GaN transistor application. IEEE Trans. Ind. Appl. 55(6), 7776-7786 (2019) https://doi.org/10.1109/tia.2019.2914193
  42. Camacho, A.P., Sala, V., Ghorbani, H., Martinez, J.L.R.: A novel active gate driver for improving SiC MOSFET switching trajectory. IEEE Trans. Ind. Electron. 64(11), 9032-9042 (2017) https://doi.org/10.1109/TIE.2017.2719603
  43. Yang, Y., Wen, Y., Gao, Y.: A Novel active gate driver for improving switching performance of high-power SiC MOSFET modules. IEEE Trans. Power Electron. 34(8), 7775-7787 (2019) https://doi.org/10.1109/tpel.2018.2878779
  44. He, Q., Zhu, Y., Zhang, H., Huang, A., Cai, Q.-M., Kim, H.: A multilevel gate driver of SiC MOSFETs for mitigating coupling noise in bridge-leg converter. IEEE Trans. Electromagn. Compat. 61(6), 1988-1996 (2019) https://doi.org/10.1109/temc.2019.2953186
  45. Zhao, S., Dearien, A., Wu, Y., Farnell, C., Rashid, A.U., Luo, F., Mantooth, H.A.: Adaptive multi-level active gate drivers for SiC power devices. IEEE Trans. Power Electron. 35(2), 1882-1898 (2020) https://doi.org/10.1109/tpel.2019.2922112
  46. Zhao, S., Zhao, X., Dearien, A., Wu, Y., Zhao, Y., Mantooth, H.A.: An intelligent versatile model-based trajectory-optimized active gate driver for silicon carbide devices. IEEE J. Emerg. Sel Topics Power Electron. 8(1), 429-441 (2020) https://doi.org/10.1109/jestpe.2019.2922824
  47. B. Sun, R. Burgos, X. Zhang, and D. Boroyevich.: Active dV/dt control of 600V GaN transistors. Proc. IEEE Energy Convers. Congr. Expo., Milwaukee, WI. 1-8 (2016)
  48. Chen, Y., Ke, X., Ma, D.B.: A 10MHz 5-to-40V EMI-regulated GaN power driver with closed-loop adaptive Miller Plateau sensing. Proc. Symp. VLSI Technol., Kyoto. C120-C121 (2017)
  49. Bau, P., Cousineau, M., Cougo, B., Richardeau, F., Rouger, N.: CMOS active gate driver for closed-loop dv/dt control of GaN transistors. IEEE Trans. Power Electron. 35(12), 13322-13332 (2020) https://doi.org/10.1109/tpel.2020.2995531
  50. Dymond, H.C.P., Liu, D., Wang, J., Dalton, J.J.O., Stark, B.H.: Multilevel active gate driver for SiC MOSFETs. Proc. IEEE Energy Convers. Congr. Expo. (ECCE), Cincinnati, OH, USA. 5107-5112 (2017)
  51. Wu, X., Zaman, H., Wu, P., Jia, R., Zhao, X., Wu, X.: A Quasi-multilevel gate driver for fast switching and crosstalk suppression of SiC devices. IEEE Access. 8, 191403-191412 (2020) https://doi.org/10.1109/access.2020.3032590
  52. Zhu, Q., Wang, L., Huang, A.Q., Booth, K., Zhang, L.: 7.2-kV single-stage solid-state transformer based on the current-fed series resonant converter and 15-kV SiC MOSFETs. IEEE Trans. Power Electron. 34(2), 1099-1112 (2019) https://doi.org/10.1109/tpel.2018.2829174
  53. Wang, L., Zhu, Q., Yu, W., Huang, A.Q.: A medium-voltage medium-frequency isolated DC-DC converter based on 15-kV SiC MOSFETs. IEEE J. Emerg. Sel Topics Power Electron. 5(1), 100-109 (2017) https://doi.org/10.1109/JESTPE.2016.2639381
  54. Dong, D., Agamy, M., Bebic, J.Z., Chen, Q., Mandrusiak, G.: A modular SiC high-frequency solid-state transformer for medium-voltage applications: design, implementation, and testing. IEEE J. Emerg. Sel. Topics Power Electron. 7(2), 768-778 (2019) https://doi.org/10.1109/jestpe.2019.2896046
  55. Rolak, M., Sobol, C., Malinowski, M., Stynski, S.: Efficiency optimization of two dual active bridge converters operating in parallel. IEEE Trans. Power Electron. 35(6), 6523-6532 (2020) https://doi.org/10.1109/tpel.2019.2951833
  56. Dao, N.D., Lee, D.C., Phan, Q.D.: High-efficiency SiC-based isolated three-port DC/DC converters for hybrid charging stations. IEEE Trans. Power Electron. 35(10), 10455-10465 (2020) https://doi.org/10.1109/tpel.2020.2975124
  57. Leuenberger, D., Biela, J.: PV-module-integrated AC inverters (AC Modules) with subpanel MPP tracking. IEEE Trans. Power Electron. 32(8), 6105-6118 (2017) https://doi.org/10.1109/TPEL.2016.2615078
  58. Huang, Q., Huang, A.Q., Yu, R., Liu, P., Yu, W.: High-Efficiency and high-density single-phase dual-mode cascaded buck-boost multilevel transformerless PV inverter with GaN AC switches. IEEE Trans. Power Electron. 34(8), 7474-7488 (2019) https://doi.org/10.1109/tpel.2018.2878586
  59. Anthon, A., Zhang, Z., Andersen, M.A.E., Holmes, D.G., McGrath, B., Teixeira, C.A.: The benefits of SiC MOSFETs in a T-Type inverter for grid-tie applications. IEEE Trans. Power Electron. 32(4), 2808-2821 (2017) https://doi.org/10.1109/TPEL.2016.2582344
  60. Barater, D., Concari, C., Buticchi, G., Gurpinar, E., De, D., Castellazzi, A.: Performance evaluation of a three-level ANPC photovoltaic grid-connected inverter with 650-V SiC devices and optimized PWM. IEEE Trans. Ind. Appl. 52(3), 2475-2485 (2016) https://doi.org/10.1109/TIA.2016.2514344
  61. Zhang, L., Lou, X., Li, C., Wu, F., Gu, Y., Chen, G., Xu, D.: Evaluation of different Si/SiC Hybrid three-level active NPC inverters for high power density. IEEE Trans. Power Electron. 35(8), 8224-8236 (2020) https://doi.org/10.1109/tpel.2019.2962907
  62. Han, D., Morris, C.T., Lee, W., Sarlioglu, B.: A case study on common mode electromagnetic interference characteristics of GaN HEMT and Si MOSFET power converters for EV/HEVs. IEEE Trans. Transport. Electrific. 3(1), 168-179 (2017) https://doi.org/10.1109/TTE.2016.2622005
  63. Taylor, A., Lu, J.H., Zhu, L., Bai, K., McAmmond, M., Brown, A.: Comparison of SiC MOSFET-based and GaN HEMT-based high-efficiency high-power density 7.2 kW EV battery chargers. IET Power Electron. 11(11), 1849-1857 (2018) https://doi.org/10.1049/iet-pel.2017.0467
  64. Madhusoodhanan, S., Tripathi, A., Patel, D., Mainali, K., Kadavelugu, A., Hazra, S., Bhattacharya, S., Hatua, K.: Solid-state transformer and MV Grid Tie applications enabled by 15 kV SiC IGBTs and 10 kV SiC MOSFETs based multilevel converters. IEEE Trans. Ind. Appl. 51(4), 3343-3360 (2015) https://doi.org/10.1109/TIA.2015.2412096
  65. Zhu, L., Bai, H., Brown, A., McAmmond, M.: Transient analysis when applying GaN + Si hybrid switching modules to a zero-voltage-switching EV onboard charger. IEEE Trans. Transport. Electrific. 6(1), 146-157 (2020) https://doi.org/10.1109/TTE.2020.2966915
  66. Marzoughi, A., Burgos, R., Boroyevich, D.: Investigating Impact of emerging medium-voltage SiC MOSFETs on medium-voltage high-power industrial motor drives. IEEE J Emerg Sel Topics Power Electron. 7(2), 1371-1387 (2019) https://doi.org/10.1109/jestpe.2018.2844376
  67. Zhang, D., He, J., Pan, D.: A megawatt-scale medium-voltage high-efficiency high power density "SiC+Si" hybrid three-level ANPC Inverter for aircraft hybrid-electric propulsion systems. IEEE Trans. Ind. Appl. 55(6), 5971-5980 (2019) https://doi.org/10.1109/tia.2019.2933513
  68. Gammeter, C., Krismer, F., Kolar, J.W.: comprehensive conceptualization, design, and experimental verification of a weight-optimized All-SiC 2 kV/700 V DAB for an airborne wind turbine. IEEE J. Emerg. Sel Topics Power Electron. 4(2), 638-656 (2016) https://doi.org/10.1109/JESTPE.2015.2459378
  69. Schrittwieser, L., Leibl, M., Kolar, J.W.: 99% efficient isolated three-phase matrix-type DAB buck-boost PFC rectifier. IEEE Trans. Power Electron. 35(1), 138-157 (2020) https://doi.org/10.1109/tpel.2019.2914488
  70. Rujas, A., Lopez, V.M., Bediaga, A.G., Berasategi, A., Nieva, T.: Railway traction DC-DC converter: Comparison of Si, SiC-hybrid, and full SiC versions with 1700 V power modules. IET Power Electron. 12(12), 3265-3271 (2019) https://doi.org/10.1049/iet-pel.2018.5729
  71. Rujas, A., Lopez, V.M., Villar, I., Nieva, T., Larzabal, I.: SiC-hybrid based railway inverter for metro application with 3.3kV low inductance power modules. Proc. of 2019 IEEE Energy Conversion Congress and Exposition (ECCE) 1992-1997 (2019)
  72. Gurpinar, E., Iannuzzo, F., Yang, Y., Castellazzi, A., Blaabjerg, F.: Design of low-inductance switching power cell for GaN HEMT based inverter. IEEE Trans. Ind. Appl. 54(2), 1592-1601 (2018) https://doi.org/10.1109/tia.2017.2777417
  73. Kulkarni, A., Gupta, A., Mazumder, S.K.: Resolving practical design issues in a single-phase grid-connected GaN-FET-based differential-mode inverter. IEEE Trans. Power Electron. 33(5), 3734-3751 (2018) https://doi.org/10.1109/tpel.2017.2767572
  74. Parreiras, T.M., Machado, A.P., Amaral, F.V., Lobato, G.C., Brito, J.A.S., Filho, B.C.: Forward dual-active-bridge solid-state transformer for a SiC-based cascaded multilevel converter cell in solar applications. IEEE Trans. Ind. Appl. 54(6), 6353-6363 (2018) https://doi.org/10.1109/tia.2018.2854674
  75. Abarzadeh, M., Khan, W., Weise, N., Al-Haddad, K., El-Refaie, A.M.: A new configuration of paralleled modular ANPC multi-level converter controlled by an improved modulation method for 1MHz, 1MW EV charger. IEEE Trans. Ind. Appl. 57(3), 3164-3178 (2020)
  76. Li, C., Lu, R., Li, C., Li, W., Gu, X., Fang, Y., Ma, H., He, X.: Space vector modulation for SiC and Si Hybrid ANPC converter in medium-voltage high-speed drive system. IEEE Trans. Power Electron. 35(4), 3390-3401 (2020) https://doi.org/10.1109/tpel.2019.2934129
  77. Ni, Z., Lyu, X., Yadav, O.P., Singh, B.N., Zheng, S., Cao, D.: Overview of real-time lifetime prediction and extension for SiC power converters. IEEE Trans. Power Electron. 35(8), 7765-7794 (2020) https://doi.org/10.1109/tpel.2019.2962503
  78. Luo, H., Iannuzzo, F., Turnaturi, M.: Role of threshold voltage shift in highly accelerated power cycling tests for SiC MOSFET modules. IEEE J. Emerg. Sel Topics Power Electron. 8(2), 1657-1667 (2020) https://doi.org/10.1109/jestpe.2019.2894717
  79. Choi, U.M., Blaabjerg, F., Jorgensen, S.: Power cycling test methods for reliability assessment of power device modules in respect to temperature stress. IEEE Trans. Power Electron. 33(3), 2531-2551 (2018) https://doi.org/10.1109/TPEL.2017.2690500
  80. Wang, Y., Lv, Y., Song, X., Chi, L., Yin, J., Zhou, X., Fang, Y., Tan, X., Guo, H., Peng, H., Gu, G., Feng, Z., Cai, S.: Reliability assessment of InAlN/GaN HFETs with lifetime 89×106h. IEEE Electron Device Lett. 38(5), 604-606 (2017) https://doi.org/10.1109/LED.2017.2679045
  81. Anurag, A., Acharya, S., Bhattacharya, S., Weatherford, T.R.: Thermal performance and reliability analysis of a medium-voltage three-phase inverter considering the influence of high dv/dt on parasitic flter elements. IEEE J. Emerg. Sel Topics Power Electron. 8(1), 486-494 (2020) https://doi.org/10.1109/jestpe.2019.2952570
  82. Hu, B., Gonzalez, J.O., Ran, L., Ren, H., Zeng, Z., Lai, W., Gao, B., Alatise, O., Lu, H., Bailey, C., Mawby, P.: Failure and reliability analysis of a SiC power module based on stress comparison to a Si device. IEEE Trans. Device Mater. Rel. 17(4), 727-737 (2017) https://doi.org/10.1109/tdmr.2017.2766692
  83. Yasui, K., Hayakawa, S., Nakamura, M., Kawase, D., Ishigaki, T., Sasaki, K., Tabata, T,. Morita, T., Sagawa, M., Matsushima, H., Kobayashi, T.: Improvement of power cycling reliability of 3.3kV Full-SiC power modules with sintered copper technology for T j,max=175℃. Proc. of 2018 IEEE 30th International Symposium on Power Semiconductor Devices and ICs (ISPSD). 455-458 (2018)