Acknowledgement
본 연구는 2022년도 과학기술정보통신부 및 정보통신기획평가원의 대학ICT연구센터육성지원사업 (IITP-2022-2018-0-01431), 2021년도 과학기술정보통신부의 재원으로 정보통신기획평가원 (No.2021-0-00951, (세부2)클라우드 기반 자율주행 AI 학습 SW 개발)과 교육부 및 한국연구재단의 4단계 두뇌한국21 사업(4단계 BK21 사업)으로 지원된 연구임.
References
- I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, "Generative adversarial nets" Advances in neural information processing systems, Vol.27, 2014.
- Y. Ganin, E. Ustinova, H. Ajakan, P. Germain, H. Larochelle, F. Laviolette, M. Marchand, and V. Lempitsky, "Domain-Adversarial Training of Neural Networks" The journal of machine learning research, Vol.17, 2016.
- E. Tzeng, J. Hoffman, J. Saenko, and C. Chen, "Adversarial discriminative domain adaptation" Proceedings of the IEEE conference on computer vision and pattern recognition, 2017. doi: https://doi.org/10.1109/cvpr.2017.316
- S. Xie, Z. Zheng, L. Chen, and C. Chen, "Learning semantic representations for unsupervised domain adaptation" International conference on machine learning. PMLR, 2018.
- J. Na, H. Jung, H. Chang, and W. Hwang, "FixBi: Bridging Domain Spaces for Unsupervised Domain Adaptation" Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2021. doi: https://doi.org/10.1109/cvpr46437.2021.00115
- J. Na, D. Han, H. Chang, and W. Hwang, "Contrastive Vicinal Space for Unsupervised Domain Adaptation" arXiv preprint arXiv:2111.13353, 2021.
- X. Gu, J. Sun, and Z. Xu. "Spherical space domain adaptation with robust pseudo-label loss" In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 9101-9110, 2020. doi: https://doi.org/10.1109/cvpr42600.2020.00912
- K. Saito, Y. Ushiku, and T. Harada. Asymmetric tri-training for unsupervised domain adaptation. International Conference on Machine Learning, pages 2988-2997. PMLR, 2017.
- G. Kang, L. Jiang, Y. Yang, and A. G. Hauptmann. Contrastive adaptation network for unsupervised domain adaptation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 4893-4902, 944 2019. doi: https://doi.org/10.1109/cvpr.2019.00503
- Mengxue Li, Yi Ming Zhai, You Wei Luo, Peng Fei Ge, and Chuan Xian Ren. Enhanced transport distance for unsupervised domain adaptation. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 13936-13944, 2020. doi: https://doi.org/10.1109/cvpr42600.2020.01395
- Shimodaira Hidetoshi. Improving predictive inference under covariate shift by weightingthe log-likelihood function. Journal of statistical planning and inference 90(2),227-244 (2000). https://doi.org/10.1016/S0378-3758(00)00115-4
- Xiao, N., Zhang, L.: Dynamic weighted learning for unsupervised domain adaptation. In: Proceedings of the IEEE/CVF Conference on Computer Vision andPattern Recognition. pp. 15242-15251 (2021) doi:https://doi.org/10.1109/cvpr46437.2021.01499
- Yue, Z., Sun, Q., Hua, X.S., Zhang, H.: Transporting causal mechanisms for un-supervised domain adaptation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision. pp. 8599-8608 (2021) doi: https://doi.org/10.1109/iccv48922.2021.00848
- Zhang, H., Cisse, M., Dauphin, Y.N., Lopez-Paz, D.: mixup: Beyond empirical risk minimization. arXiv preprint arXiv:1710.09412 (2017)
- Saenko, K., Kulis, B., Fritz, M., Darrell, T.: Adapting visual category models to new domains. In: European conference on computer vision. pp. 213-226. Springer(2010) doi: https://doi.org/10.1007/978-3-642-15561-1_16
- Venkateswara, H., Eusebio, J., Chakraborty, S., Panchanathan, S.: Deep hashing network for unsupervised domain adaptation. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 5018-5027 (2017) doi: https://doi.org/10.1109/cvpr.2017.572
- Lee, D.H., et al.: Pseudo-label: The simple and efficient semi-supervised learning method for deep neural networks. In: Workshop on challenges in representation learning, ICML. p. 896 (2013)
- H. Pham, Z. Dai, Q. Xie, and Q. V. Le. Meta pseudo labels. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 11557-11568, 2021. doi: https://doi.org/10.1109/cvpr46437.2021.01139
- He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition. 770-778 (2016) doi: https://doi.org/10.1109/cvpr.2016.90
- He, K., Zhang, X., Ren, S., Sun, J.: Identity mappings in deep residual networks. In: European conference on computer vision. pp. 630-645. Springer (2016) doi: https://doi.org/10.1007/978-3-319-46493-0_38