Acknowledgement
This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MSIT) (2021R1A2C2007220).
References
- Oh, S. W., Lee, J. Y., Xu, N., & Kim, S. J., "Video object segmentation using space-time memory networks." Proceedings of the IEEE/CVF International Conference on Computer Vision. 2019. doi: https://doi.org/10.1109/ICCV.2019.00932
- Li, Yu, Zhuoran Shen, and Ying Shan., "Fast video object segmentation using the global context module." European Conference on Computer Vision. Springer, Cham, 2020. doi: https://doi.org/10.1007/978-3-030-58607-2_43
- Liang, Y., Li, X., Jafari, N., & Chen, J., "Video object segmentation with adaptive feature bank and uncertain-region refinement." Advances in Neural Information Processing Systems 33: 3430-3441., 2020.
- Pont-Tuset, J., Perazzi, F., Caelles, S., Arbelaez, P., Sorkine-Hornung, A., & Van Gool, L, "The 2017 davis challenge on video object segmentation." arXiv preprint arXiv:1704.00675, 2017.
- Ning Xu, Linjie Yang, Dingcheng Yue, Jianchao Yang, Brian Price, Jimei Yang, Scott Cohen, Yuchen Fan, Yuchen Liang, and Thomas Huang., "Youtube-vos: Sequence-to-sequence video object segmentation." In European Conference on Computer Vision (ECCV), 2018. doi: https://doi.org/10.1007/978-3-030-01228-1_36
- Yao, R., Lin, G., Xia, S., Zhao, J., & Zhou, Y., "Video object segmentation and tracking: A survey." ACM Transactions on Intelligent Systems and Technology (TIST) 11.4 ,1-47p, 2020. doi: http://dx.doi.org/10.1145/3391743
- Wang, H., Jiang, X., Ren, H., Hu, Y., & Bai, S., "Swiftnet: Real-time video object segmentation." Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. 2021. doi: https://doi.org/10.1109/CVPR46437.2021.00135
- Hu, Yuan-Ting, Jia-Bin Huang, and Alexander G. Schwing. "Video-match: Matching based video object segmentation." Proceedings of the European conference on computer vision (ECCV). 2018. doi: https://doi.org/10.1007/978-3-030-01237-3_4
- He, K., Zhang, X., Ren, S., & Sun, J., "Deep residual learning for image recognition.", Proceedings of the IEEE conference on computer vision and pattern recognition, p. 770-778, 2016. doi: https://doi.org/10.1109/CVPR.2016.90
- T. -Y. Lin, P. Dollar, R. Girshick, K. He, B. Hariharan and S. Belongie, "Feature Pyramid Networks for Object Detection.", IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 936-944, 2017. doi: https://doi.org/10.1109/CVPR.2017.106