고효율 친환경 InP 양자점의 합성과 응용

  • 이종수 (대구경북과학기술원 에너지공학전공) ;
  • 조신영 (대구경북과학기술원 에너지공학전공) ;
  • ;
  • 안재현 (대구경북과학기술원 에너지공학전공) ;
  • Published : 2022.08.30

Abstract

Keywords

References

  1. H .S . Mansur, WIREs Nanomedicine and Nanobiotechnology., 2, 113-129 (2010). https://doi.org/10.1002/wnan.78
  2. M. Chen, L. Lu, H. Yu, C. Li, and N. Zhao, Adv. Sci., 8, 2101560. (2021).
  3. S. J. Rosenthal, and D. W. Wright, (ed.). Nanobiotechnology protocols. Totowa: Humana Press. (2005).
  4. L. E. Brus, Chem. Phys., 80, 9, 4403-4409. (1984).
  5. S. Tamang, S. Lee, H. Choi, and S. Jeong, Chem. Mater., 28, 8119-8122. (2016). https://doi.org/10.1021/acs.chemmater.6b03585
  6. P. M. Allen, B. J. Walker, and M. G. Bawendi, Angew. Chem., 49, 760-762. (2010). https://doi.org/10.1002/anie.200905632
  7. L. Li, and P. Reiss, J. Am. Chem. Soc., 130, 11588-11589. (2008). https://doi.org/10.1021/ja803687e
  8. W. S. Song, H. S. Lee, J. C. Lee, D. S. Jang, Y. Choi, M. Choi, and H. Yang, J. Nanoparticle Res., 15, 1-10. (2013).
  9. H. Bahmani Jalali, R. Melikov, S. Sadeghi, and S. Nizamoglu, J. Phys. Chem. C, 122, 11616-11622. (2018).
  10. W. W. Yu, L. Qu, W. Guo, and X. Peng, Chem. Mater., 15, 2854-2860. (2003). https://doi.org/10.1021/cm034081k
  11. L. Brus, J. Phys. Chem., 90, 2555-2560. (1986). https://doi.org/10.1021/j100403a003
  12. Y. Wang, and N. Herron, J. Phys. Chem., 95, 525-532. (1991). https://doi.org/10.1021/j100155a009
  13. O. I. Micic, J. Sprague, Z. Lu, and A. J. Nozik, Appl. Phys. Lett., 68, 3150-3152. (1996). https://doi.org/10.1063/1.115807
  14. D. V. Talapin, N. Gaponik, H. Borchert, A. L. Rogach, M. Haase, and H. Weller, J. Phys. Chem. B, 106, 12659-12663. (2002). https://doi.org/10.1021/jp026380n
  15. S. Adam, C. McGinley, T. Moller, D. V.Talapin, H. Borchert, M. Haase, and H. Weller, Eur. Phys. J. D., 24, 373-376. (2003). https://doi.org/10.1140/epjd/e2003-00162-1
  16. S. Adam, D. V. Talapin, H. Borchert, A. Lobo, C. McGinley, A. R. B. De Castro, M. Haase, H. Weller, and T. Moller, Chem. Phys., 123, 084706. (2005).
  17. T. G. Kim, D. Zherebetskyy, Y. Bekenstein, M. H. Oh, L. W. Wang, E. Jang, and A. P. Alivisatos, ACS Nano, 12, 11529-11540. (2018). https://doi.org/10.1021/acsnano.8b06692
  18. E. Ryu, S. Kim, E. Jang, S. Jun, H. Jang, B. Kim, and S. W. Kim, Chem. Mater., 21, 573-575. (2009). https://doi.org/10.1021/cm803084p
  19. Y. Li, C. Pu, and X. Peng, Nano Res., 10, 941-958. (2017). https://doi.org/10.1007/s12274-016-1353-x
  20. T. R. Pisanic Ii, Y. Zhang, and T. H. Wang, Analyst, 139, 2968-2981. (2014). https://doi.org/10.1039/C4AN00294F
  21. S. A. Ivanov, A. Piryatinski, J. Nanda, S. Tretiak, K. R. Zavadil, W. O. Wallace, D. Werder, and V. I. Klimov, J. Am. Chem. Soc., 129(38), 11708-11719. (2007). https://doi.org/10.1021/ja068351m
  22. S. Tamang, C. Lincheneau, Y. Hermans, S. Jeong, and P. Reiss, Chem. Mater., 28, 2491-2506. (2016). https://doi.org/10.1021/acs.chemmater.5b05044
  23. B. Mahler, P. Spinicelli, S. Buil, X. Quelin, J. P. Hermier, and B. Dubertret, Nat. Mater., 7, 659-664. (2008). https://doi.org/10.1038/nmat2222
  24. D. J. Smith, T. Aoki, J. K. Furdyna, X. Liu, M. R. McCartney, and Y. H. Zhang, Journal of Physics: Conference Series., 471, 012005. (2013).
  25. J. Lim, W. K. Bae, D. Lee, M. K. Nam, J. Jung, C. Lee, K. Char, and S. Lee, Chem. Mater., 23, 4459-4463. (2011). https://doi.org/10.1021/cm201550w
  26. Y. H. Won, O. Cho, T. Kim, D. Y. Chung, T. Kim, H. Chung, H. Jang, J. Lee, D. Kim, and E. Jang, Nature, 575, 634-638. (2019). https://doi.org/10.1038/s41586-019-1771-5
  27. P. Ramasamy, N. Kim, Y. S. Kang, O. Ramirez, and J. S. Lee, Chem. Mater. , 29, 6893-6899. (2017). https://doi.org/10.1021/acs.chemmater.7b02204
  28. E. Jang, Y. Kim, Y. H. Won, H. Jang, and S. M. Choi, ACS Energy Lett., 5, 1316-1327. (2020). https://doi.org/10.1021/acsenergylett.9b02851
  29. P. Ramasamy, K. J. Ko, J. W. Kang, and J. S. Lee, Chem. Mater., 30, 3643-3647. (2018). https://doi.org/10.1021/acs.chemmater.8b02049
  30. O. I. Micic, and A. J. Nozik, J. Lumin., 70, 95-107. (1996). https://doi.org/10.1016/0022-2313(96)00047-6
  31. Y. Li, X. Hou, X. Dai, Z. Yao, L. Lv, Y. Jin, and X. Peng, J. Am. Chem. Soc., 141, 6448-6452. (2019). https://doi.org/10.1021/jacs.8b12908
  32. B. G. Jeong, J. H. Chang, D. Hahm, S. Rhee, M. Park, S. Lee, Y. Kim, D. Shin, J. W. Park, C. Lee, Doh C. Lee, K. Park, E. Hwang, and W. K. Bae, Nat. mater., 21, 246-252. (2022). https://doi.org/10.1038/s41563-021-01119-8
  33. R. Xie, D. Battaglia, and X. Peng, J. Am. Chem. Soc., 129, 15432-15433. (2007). https://doi.org/10.1021/ja076363h
  34. L. Li, and P. Reiss, J. Am. Chem. Soc., 130, 11588. (2008).
  35. S. Kim, T. Kim, M. Kang, S. K. Kwak, T. W. Yoo, L. S. Park, I. Yang, S. Hwang, J. E. Lee, S. K. Kim, and S. W. Kim, J. Am. Chem. Soc., 134, 3804-3809. (2012). https://doi.org/10.1021/ja210211z
  36. H. Zhang, N. Hu, Z. Zeng, Q. Lin, F. Zhang, A. Tang, Y. Jia, L. S. Li, H. Shen, F. Teng, and Z. Du, Adv. Opt. Mater., 7, 1801602. (2019).
  37. J. Lim, M. Park, W. K. Bae, D. Lee, S. Lee, C. Lee, and K. Char, ACS Nano, 7, 9019-9026. (2013). https://doi.org/10.1021/nn403594j
  38. T. Kim, Y. H. Won, E. Jang, and D. Kim, Nano Lett., 21, 2111-2116. (2021). https://doi.org/10.1021/acs.nanolett.0c04740
  39. Y. Lee, D. Y. Jo, T. Kim, J. H. Jo, J. Park, H. Yang, and D. Kim, ACS Appl. Mater. Interfaces., 14, 12479-12487. (2022). https://doi.org/10.1021/acsami.1c20088
  40. J. Park, Y. H. Won, Y. Han, H. M. Kim, E. Jang, and D. Kim, Small, 18, 2105492. (2022).
  41. D. A. Taylor, J. A. Teku, S. Cho, W. S. Chae, S. J. Jeong, and J. S. Lee, Chem. Mater., 33, 4399-4407. (2021). https://doi.org/10.1021/acs.chemmater.1c00348
  42. W.-C. Chao, T.-H. Chiang, Y.-C. Liu, Z.-X. Huang, C.-C. Liao, C.-H. Chu, C.-H. Wang, H.-W. Tseng, W.-Y. Hung, and P. T. Chou, Commun. Mater., 2, 96, 1-10. (2021). https://doi.org/10.1038/s43246-020-00110-1
  43. T. Kim, K.-H. Kim, S. Kim, S.-M. Choi, H. Jang, H.-K. Seo, H. Lee, D.-Y. Chung, and E. Jang, Nature, 586, 385-389. (2020). https://doi.org/10.1038/s41586-020-2791-x
  44. J. H. Jo, J. H. Kim, K. H. Lee, C. Y. Han, E. P. Jang, Y. R. Do, and H. Yang, Opt. Lett., 41, 3984-3987. (2016). https://doi.org/10.1364/OL.41.003984
  45. F. Cao, S. Wang, F. Wang, Q. Wu, D. Zhao, and X. Yang, Chem. Mater., 30, 8002-8007. (2018). https://doi.org/10.1021/acs.chemmater.8b03671
  46. H. C. Wang, H. Zhang, H. Y. Chen, H. C. Yeh, M. R. Tseng, R. J. Chung, S. Chen, and R. S. Liu, Small, 13, 1603962. (2017).
  47. H. Zhang, X. Ma, Q. Lin, Z. Zeng, H. Wang, L. S. Li, H. Shen, Y. Jia, and Z. Du, J. Phys. Chem. Lett., 11, 960-967. (2020). https://doi.org/10.1021/acs.jpclett.9b03567
  48. Y.-H. Suh, S. Lee, S.-M. Jung, S. Y. Bang, J. Yang, X. B. Fan, S. Zhan, C. Samarakoon, J.-W. Jo, Y. Kim, H. W. Choi, L. G. Occhipinti, T. H. Lee, D.-W. Shin, and J. M. Kim, Adv. Opt. Mater., 10, 2102372. (2022).
  49. J. Kwak, W. K. Bae, D. Lee, I. Park, J. Lim, M. Park, H. Cho, H. Woo, D. Y. Yoon, K. Char, S. Lee, and C. Lee, Nano lett., 12, 2362-2366. (2012). https://doi.org/10.1021/nl3003254
  50. B. S. Mashford, M. Stevenson, Z. Popovic, C. Hamilton, Z. Zhou, C. Breen, J. Steckel, V. Bulovic, M. Bawendi, S. Coe-Sullivan, and P. T. Kazlas, Nat. photonics, 7, 407-412. (2013). https://doi.org/10.1038/nphoton.2013.70
  51. X. Dai, Z. Zhang, Y. Jin, Y. Niu, H. Cao, X. Liang, L. Chen, J. Wang, and X. Peng, Nature, 515, 96-99. (2014). https://doi.org/10.1038/nature13829
  52. J. R. Manders, L. Qian, A. Titov, J. Hyvonen, J. Tokarz-Scott, K. P. Acharya, Y. Yang, W. Cao, Y. Zheng, J. Xue, and P. H. Holloway, J. Soc. Inf. Disp., 23, 523-528. (2015). https://doi.org/10.1002/jsid.393
  53. W. Cao, C. Xiang, Y. Yang, Q. Chen, L. Chen, X. Yan, and L. Qian, Nat. Commun., 9, 2608 (2018).
  54. H. Shen, Q. Gao, Y. Zhang, Y. Lin, Q. Lin, Z. Li, L. Chen, Z. Zeng, X. Li, Y. Jia, S. Wang, Z. Du, L. S. Li, and Z. Zhang, Nat. Photonics, 13, 192-197. (2019). https://doi.org/10.1038/s41566-019-0364-z
  55. Y. Yang, Y. Zheng, W. Cao, A. Titov, J. Hyvonen, J. R. Manders, J. Xue, P. H. Holloway, and L. Qian, Nat. Photonics, 9, 259-266. (2015). https://doi.org/10.1038/nphoton.2015.36
  56. K. H. Lee, J. H. Lee, W. S. Song, H. Ko, C. Lee, J. H. Lee, and H. Yang, ACS Nano, 7, 7295-7302. (2013). https://doi.org/10.1021/nn402870e
  57. L. Wang, J. Lin, Y. Hu, X. Guo, Y. Lv, Z. Tang, J. Zhao, Y. Fan, N. Zhang, Y. Wang, and X. Liu, ACS Appl. Mater. Interfaces., 9, 38755-38760. (2017). https://doi.org/10.1021/acsami.7b10785
  58. E. P. Jang, C. Y. Han, S. W. Lim, J. H. Jo, D. Y. Jo, S. H. Lee, S. Y. Yoon, and H. Yang, ACS Appl. Mater. Interfaces., 11, 46062-46069. (2019). https://doi.org/10.1021/acsami.9b14763
  59. J. S. Park, J. Kyhm, H. H. Kim, S. Jeong, J. Kang, S. E. Lee, K.-T. Lee, K. Park, N. Barange, J. Han, J. D. Song, W. K. Choi, and I. K. Han, Nano lett., 16, 6946-6953. (2016). https://doi.org/10.1021/acs.nanolett.6b03007
  60. C. H. Lin, Q. Zeng, E. Lafalce, S. Yu, M. J. Smith, Y. J. Yoon, Y. Chang, Y. Jiang, Z. Lin, Z. V. Vardeny, and V. V. Tsukruk, Adv. Opt. Mater., 6, 1800474. (2018).
  61. W. Mei, Z. Zhang, A. Zhang, D. Li, X. Zhang, H. Wang, Z. Chen, Y. Li, X. Li, and X. Xu, Nano Res., 13, 2485-2491. (2020). https://doi.org/10.1007/s12274-020-2883-9
  62. T. H. Kim, D. Y. Chung, J. Ku, I. Song, S. Sul, D. H. Kim, K.-S. Cho, B. L. Choi, J. M. Kim, S. Hwang and K. Kim, Nat. Commun., 4, 1-12. (2013).
  63. T. W. Nam, M. Kim, Y. Wang, G. Y. Kim, W. Choi, H. Lim, K. M. Song, M.-J. Choi, D. Y. Jeon, J. C. Grossman, Y. S. Jung, Nat. Commun., 11, 1-11. (2020). https://doi.org/10.1038/s41467-019-13993-7
  64. B. H. Kim, M. S. Onses, J. B. Lim, S. Nam, N. Oh, H. Kim, K. J. Yu, J. W. Lee, J.-H. Kim, S.-K. Kang, C. H. Lee, J. Lee, J. H. Shin, N. H. Kim, C. Leal, M. Shim, and J. A. Rogers, Nano lett., 15, 969-973. (2015). https://doi.org/10.1021/nl503779e
  65. C. Jiang, Z. Zhong, B. Liu, Z. He, J. Zou, L. Wang, J. Wang, J. B. Peng, and Y. Cao, ACS Appl. Mater. Interfaces, 8, 26162-26168. (2016). https://doi.org/10.1021/acsami.6b08679
  66. P. Yang, L. Zhang, D. J. Kang, R. Strahl, T. Kraus, Adv. Opt. Mater., 8, 1901429. (2020).
  67. Y. Wang, I. Fedin, H. Zhang, and D. V. Talapin, Science, 357, 385-388. (2017). https://doi.org/10.1126/science.aan2958
  68. Y. Wang, J. A. Pan, H. Wu, and D. V. Talapin, ACS Nano, 13, 13917-13931. (2019). https://doi.org/10.1021/acsnano.9b05491
  69. H. Cho, J . A. Pan, H. Wu, X. Lan, I . Coropceanu, Y. Wang, W. Cho, E. A. Hill, J. S. Anderso, and D. V. Talapin, Adv. Mater., 32, 2003805. (2020).
  70. J. A. Pan, J. C. Ondry, and D. V. Talapin, Nano Lett., 21, 7609-7616. (2021).  https://doi.org/10.1021/acs.nanolett.1c02249