Acknowledgement
This research is funded by the Xi'an Thermal Power Research Institute Co., Ltd.
References
- H. Reutler, G.H. Lohnert, The modular high-temperature reactor, Nucl. Technol. 62 (1) (1983) 22-30. https://doi.org/10.13182/NT83-A33228
- H. Reutler, G. Lohnert, Advantages of going modular in HTRs, Nucl. Eng. Des. 78 (2) (1984) 129-136. https://doi.org/10.1016/0029-5493(84)90298-X
- H. Frewer, W. Keller, R. Pruschek, The modular high-temperature reactor, Nucl. Sci. Eng. 90 (4) (1985) 411-426. https://doi.org/10.13182/NSE85-4
- J.E. Kelly, Generation IV International Forum: a decade of progress through international cooperation, Prog. Nucl. Energy 77 (2014) 240-246. https://doi.org/10.1016/j.pnucene.2014.02.010
- D.Z. Wang, D.X. Zhong, Y.K. Yu, Present status of research and development for HTR in China, Energy 16 (1) (1991) 159-167. https://doi.org/10.1016/0360-5442(91)90097-6
- Z. Zhang, Z.X. Wu, D.Z. Wang, Y.H. Xu, Y.L. Sun, F. Li, Y.J. Dong, Current status and technical description of Chinese 2×250MWth HTR-PM demonstration plant, Nucl. Eng. Des. 239 (7) (2009) 1212-1219. https://doi.org/10.1016/j.nucengdes.2009.02.023
- A.C. Kadak, The status of the US high-temperature gas reactors, Eng. Times 2 (1) (2016) 119-123.
- S. Ueta, J. Aihara, K. Sawa, A. Yasuda, M. Honda, N. Furihata, Development of high temperature gas-cooled reactor (HTGR) fuel in Japan, Prog. Nucl. Energy 53 (7) (2011) 788-793. https://doi.org/10.1016/j.pnucene.2011.05.005
- Z.Y. Zhang, Z.X. Wu, Y.L. Sun, F. Li, Design aspects of the Chinese modular high-temperature gas-cooled reactor HTR-PM, Nucl. Eng. Des. 236 (5) (2006) 485-490. https://doi.org/10.1016/j.nucengdes.2005.11.024
- P.Y. Zhang, Q.Q. Guo, S. Pang, Y.L. Sun, Y. Chen, Experimental research on vertical mechanical performance of embedded through-penetrating steel-concrete composite joint in high-temperature gas-cooled reactor pebble-bed module, Nucl. Eng. Technol. (2022).
- W.J. Zeng, Q.F. Jiang, S.M. Du, T.Y. Hui, S. Li, Design of the flexible switching controller for small PWR core power control with the multi-model, Nucl. Eng. Technol. 53 (2021) 851-859. https://doi.org/10.1016/j.net.2020.07.037
- L. Wang, X.Y. Wei, F.Y. Zhao, X.G. Fu, Modification and analysis of load follow control without boron adjustment for CPR1000, Ann. Nucl. Energy 70 (2014) 317-328. https://doi.org/10.1016/j.anucene.2013.12.001
- M.R. Li, W.Z. Chen, J.L. Hao, W.T. Li, Experimental and numerical investigations on effect of reverse flow on transient from forced circulation to natural circulation, Nucl. Eng. Technol. 52 (2020) 1955-1962. https://doi.org/10.1016/j.net.2020.02.019
- P. Singh, L.K. Singh, Instrumentation and control systems design for nuclear power plant: an interview study with industry practitioners, Nucl. Eng. Technol. 53 (2021) 3694-3703. https://doi.org/10.1016/j.net.2021.05.025
- J.W. H, J.Q. Yuan, Disturbance observer-based robust backstepping load-following control for MHTGRs with actuator saturation and disturbances, Nucl. Eng. Technol. 53 (2021) 3685-3693. https://doi.org/10.1016/j.net.2021.05.019
- Z. Dong, Nonlinear adaptive power-level control for modular high temperature gas-cooled reactors, IEEE Trans. Nucl. Sci. 60 (2) (2013) 1332-1345. https://doi.org/10.1109/TNS.2013.2252023
- D. Jiang, Z. Dong, Dynamic matrix control for thermal power of multi-modular high temperature gas-cooled reactor plants, Energy (198) (2020) 117386.
- S.M. Baek, H.C. No, I.Y. Park, A non-equilibrium three-region model for transient analysis of pressurized water reactor pressurizer, Nucl. Technol. 74 (1986) 213-221.
- J.F. Wilson, R.J. Grenda, J.F. Patterson, The velocity of rising steam in a bubble two-phase mixture, Trans. Am. Nucl. Soc. 5 (1962) 151.
- A. Bejan, A.D. Kraus, Heat Transfer Handbook, John Wiley & Sons, 2003.
- Mathworks Inc, Control System Toolbox Documentation, 2016.