DOI QR코드

DOI QR Code

The high thermal stability induced by a synergistic effect of ZrC nanoparticles and Re solution in W matrix in hot rolled tungsten alloy

  • Zhang, T. (School of Physics and Material Sciences, GuangZhou University) ;
  • Du, W.Y. (School of Physics and Material Sciences, GuangZhou University) ;
  • Zhan, C.Y. (School of Physics and Material Sciences, GuangZhou University) ;
  • Wang, M.M. (Ningbo Branch of Chinese Academy of Ordnance Science) ;
  • Deng, H.W. (School of Physics and Material Sciences, GuangZhou University) ;
  • Xie, Z.M. (Key Laboratory of Materials Physics, Institute of Solid State Physics, Chinese Academy of Sciences) ;
  • Li, H. (School of Physics and Material Sciences, GuangZhou University)
  • Received : 2021.10.09
  • Accepted : 2022.03.08
  • Published : 2022.08.25

Abstract

The synergistic effect of ZrC nanoparticle pining and Re solution in W matrix on the thermal stability of tungsten was studied by investigating the evolution of the microstructure, hardness and tensile properties after annealing in a temperature range of 1000-1700 ℃. The results of metallography, electron backscatter diffraction pattern and Vickers micro-hardness indicate that the rolled W-1wt%Re-0.5 wt% ZrC alloy has a higher recrystallization temperature (1600 ℃-1700 ℃) than that of the rolled pure W (1200 ℃), W-0.5 wt%ZrC (1300 ℃), W-0.5 wt%HfC (1400-1500 ℃) and W-K-3wt%Re alloy fabricated by the same technology. The molecular dynamics simulation results indicated that solution Re atoms in W matrix can slow down the self-diffusion of W atoms and form dragging effect to delay the growth of W grain, moreover, the diffusion coefficient decrease with increasing Re content. In addition, the ZrC nanoparticles can pin the grain boundaries and dislocations effectively, preventing the recrystallization. Therefore, synergistic effect of solid solution Re element and dispersed ZrC nanoparticles significantly increase recrystallization temperature.

Keywords

Acknowledgement

This work was financially supported by the National Key Research and Development Program of China (Grant No. 2019YFE03110200) and the National Natural Science Foundation of China (Grant Nos.: 51771184).

References

  1. J. Knaster, A. Moeslang, T. Muroga, Nat. Phys. 12 (2016) 424. https://doi.org/10.1038/nphys3735
  2. A.R. Raffray, R. Nygren, D.G. Whyte, et al., Fusion Eng. Des. 85 (2010) 93. https://doi.org/10.1016/j.fusengdes.2009.08.002
  3. C. Linsmeier, M. Rieth, J. Aktaa, et al., Nucl. Fusion 57 (2017) 92007. https://doi.org/10.1088/1741-4326/aa6f71
  4. S. Wurster, B. Gludovatz, A. Hoffmann, R. Pippan, J. Nucl. Mater. 413 (2011) 166. https://doi.org/10.1016/j.jnucmat.2011.04.025
  5. S. Wurster, N. Baluc, M. Battabyal, et al., J. Nucl. Mater. 442 (2013) S181. https://doi.org/10.1016/j.jnucmat.2013.02.074
  6. M. Xia, Q.Z. Yan, L. Xu, H.Y. Guo, L.X. Zhu, C.C. Ge, J. Nucl. Mater. 434 (2013) 85. https://doi.org/10.1016/j.jnucmat.2012.11.017
  7. T. Hirai, et al., Nucl. Mater. Energy 9 (2016) 616. https://doi.org/10.1016/j.nme.2016.07.003
  8. Q. Xu, H.Y. Chen, L.M. Luo, M. Miyamoto, M. Tokitani, Y.C. Wu, Tungsten 1 (2019) 229-235. https://doi.org/10.1007/s42864-019-00026-5
  9. K. Tsuchida, T. Miyazawa, A. Hasegawa, S. Nogami, M. Fukuda, Nucl. Mater. Energy 15 (2018) 158. https://doi.org/10.1016/j.nme.2018.04.004
  10. Y. Mutoh, K. Ichikawa, K. Nagata, M. Takeuchi, J. Mater. Sci. 30 (1995) 770. https://doi.org/10.1007/BF00356341
  11. L. Romaner, C. Ambrosch-Draxl, R. Pippan, Phys. Rev. Lett. 104 (2010) 19.
  12. L. El-Guebaly, R. Kurtz, M. Rieth, H. Kurishita, A. Robinson, Aries Team, Fusion Sci. Technol 60 (2011) 185. https://doi.org/10.13182/FST11-A12349
  13. N. Baluc, Assessment Report on Tungsten, Final Report on the EFDA Task TW1-TTMA-002 Deliverable, 5, 2002.
  14. I.E. Garkusha, I. Landman, J. Linke, V.A. Makhlaj, A.V. Medvedev, S.V. Malykhin, S. Peschanyi, G. Pintsuk, A.T. Pugachev, V.I. Tereshin, J. Nucl. Mater 415 (2011) S65. https://doi.org/10.1016/j.jnucmat.2010.11.047
  15. J. Linke, T. Loewenhoff, V. Massaut, G. Pintsuk, G. Ritz, M. Rodig, A. Schmidt, C. Thomser, I. Uytdenhouwen, V. Vasechko, M. Wirtz, Nucl. Fusion 51 (2011) 73017. https://doi.org/10.1088/0029-5515/51/7/073017
  16. X. Liu, Y.Y. Lian, L. Chen, Z.K. Chen, J.M. Chen, X.R. Duan, J.L. Fan, J.P. Song, J. Nucl. Mater 463 (2015) 166. https://doi.org/10.1016/j.jnucmat.2014.12.114
  17. Z.M. Xie, S. Miao, R. Liu, L.F. Zeng, T. Zhang, Q.F. Fang, C.S. Liu, X.P. Wang, Y.Y. Lian, X. Liu, L.H. Cai, J. Nucl. Mater 496 (2017) 41. https://doi.org/10.1016/j.jnucmat.2017.09.022
  18. Z. Dong, N. Liu, Z. Ma, C. Liu, Q. Guo, Y. Liu, J. Alloys Compd. 695 (2017) 2969. https://doi.org/10.1016/j.jallcom.2016.11.364
  19. I. Wesemann, W. Spielmann, P. Heel, A. Hoffmann, Int. J. Refract. Metals Hard Mater. 28 (2010) 687. https://doi.org/10.1016/j.ijrmhm.2010.05.009
  20. Z.M. Xie, R. Liu, S. Miao, X.D. Yang, T. Zhang, X.P. Wang, Q.F. Fang, C.S. Liu, G.N. Luo, Y.Y. Lian, Sci. Rep 5 (2015) 16014. https://doi.org/10.1038/srep16014
  21. M.M. Wang, Z.M. Xie, H.W. Deng, J.F. Yang, Y.K. Wang, T. Zhang, X.P. Wang, Q.F. Fang, C.S. Liu, Mater. Sci. Eng. 754 (2019) 216. https://doi.org/10.1016/j.msea.2019.03.071
  22. W. Guo, L. Cheng, G. Temmerman, Y. Yuan, G. Lu, Nucl. Fusion 58 (2018), 106011. https://doi.org/10.1088/1741-4326/aad2b0
  23. K. Tsuchida, T. Miyazawa, A. Hasegawa, S. Nogami, M. Fukuda, Nucl. Mater. Energy 15 (2018) 158. https://doi.org/10.1016/j.nme.2018.04.004
  24. H. Kurishita, S. Matsuo, H. Arakawa, T. Sakamoto, S. Kobayashi, K. Nakai, H. Okano, H. Watanabe, N. Yoshida, Y. Torikai, Phys. Scripta (2014) 14032, 2014.
  25. K. Jin, C. Zhang, R. Liu, Z.M. Xie, L.C. Zhang, et al., Tungsten 129 (2020) 42864.
  26. X. Zan, M. Gu, K. Wang, L. Luo, X. Zhu, Y. Wu, Fusion Eng. Des. 144 (2019) 1. https://doi.org/10.1016/j.fusengdes.2019.04.017
  27. T. Zhang, H.W. Deng, Z.M. Xie, R. Liu, C.S. Liu, X.P. Wang, Q.F. Fang, Y. Xiong, J. Mater. Sci. Technol. 52 (2020) 29-62. https://doi.org/10.1016/j.jmst.2020.02.046
  28. H.W. Deng, Z.M. Xie, B.L. Zhao, Y.K. Wang, M.M. Wang, J.F. Yang, T. Zhang, Y. Xiong, X.P. Wang, Q.F. Fang, C.S. Liu, Mater. Sci. Eng. 744 (2019) 241-246. https://doi.org/10.1016/j.msea.2018.11.143
  29. Y. Itoh, Y. Ishiwata, JSME Int. J. Ser. A 39 (1996) 429.
  30. T. Zhang, Z.M. Xie, J.F. Yang, T. Hao, C.S. Liu, Tungsten 1 (2019) 187. https://doi.org/10.1007/s42864-019-00022-9
  31. X. Yang, Z. Xie, S. Miao, R. Liu, W. Jiang, T. Zhang, et al., Fusion Eng. Des 106 (2016) 56-62. https://doi.org/10.1016/j.fusengdes.2016.03.063
  32. H. Deng, Z. Xie, Y. Wang, R. Liu, T. Zhang, Q. Fang, C. Liu, Mater. Sci. Eng. 715 (2018) 117. https://doi.org/10.1016/j.msea.2017.12.112
  33. Z. Xie, R. Liu, X. Wang, Q. Fang, C. Liu, T. Zhang, Int. J. Refract. Metals Hard Mater. 51 (2015) 180-187. https://doi.org/10.1016/j.ijrmhm.2015.03.019
  34. H.P. Gao, R.H. Zee, J. Mater, Sci. Lett. 20 (2001) 885-887. https://doi.org/10.1023/A:1010915012522
  35. T. Zhang, Z.M. Xie, C.S. Liu, The Tungsten Based Plasma Facing Materials, a Chapter of Fusion Energy, Publicated by Intech Open publisher, England, 2019. ISBN 978-1-78985-414-5.
  36. S. Miao, Z. Xie, T. Zhang, X. Wang, Q. Fang, C. Liu, et al., Mater. Sci. Eng. 671 (2016) 87. https://doi.org/10.1016/j.msea.2016.06.049
  37. Y. Wang, Z. Xie, M. Wang, H. Deng, J. Yang, Y. Jiang, et al., Int. J. Refract. Metals Hard Mater. 81 (2019) 42. https://doi.org/10.1016/j.ijrmhm.2019.02.018
  38. L. Veleva, R. Schaeublin, M. Battabyal, T. Plociski, N. Baluc, Int. J. Refract. Metals Hard Mater. 50 (2015) 210-216. https://doi.org/10.1016/j.ijrmhm.2015.01.011
  39. B. Huang, J. Tang, L. Chen, X. Yang, Y. Lian, et al., J. Alloys Compd. 782 (2019) 149-159. https://doi.org/10.1016/j.jallcom.2018.12.168
  40. W. Setyawan, N. Gao, R.J. Kurtz, J. Appl. Phys. 123 (2018), 205102. https://doi.org/10.1063/1.5030113
  41. H.P. Gao, R.H. Zee, Scripta Metall. Mater. 32 (1995) 1665. https://doi.org/10.1016/0956-716X(95)00252-Q
  42. C.L. Briant, O. Horacsek, K. Horacsek, Metall. Trans. A 24 (1993) 843-851. https://doi.org/10.1007/BF02656505
  43. V. Nikolic, J. Riesch, R. Pippan, Mater. Sci. Eng. 737 (2018) 422. https://doi.org/10.1016/j.msea.2018.09.027
  44. P. Schade, Int. J. Refract. Metals Hard Mater. 16 (1998) 77. https://doi.org/10.1016/S0263-4368(98)00015-8