DOI QR코드

DOI QR Code

Molecular dynamics study of liquid sodium film evaporation and condensation by Lennard-Jones potential

  • Wang, Zetao (State Key Laboratory of Multiphase Flow in Power Engineering, Shaanxi Key Lab of Advanced Nuclear Energy and Technology, School of Nuclear Science and Technology, Xi'an Jiaotong University) ;
  • Guo, Kailun (State Key Laboratory of Multiphase Flow in Power Engineering, Shaanxi Key Lab of Advanced Nuclear Energy and Technology, School of Nuclear Science and Technology, Xi'an Jiaotong University) ;
  • Wang, Chenglong (State Key Laboratory of Multiphase Flow in Power Engineering, Shaanxi Key Lab of Advanced Nuclear Energy and Technology, School of Nuclear Science and Technology, Xi'an Jiaotong University) ;
  • Zhang, Dalin (State Key Laboratory of Multiphase Flow in Power Engineering, Shaanxi Key Lab of Advanced Nuclear Energy and Technology, School of Nuclear Science and Technology, Xi'an Jiaotong University) ;
  • Tian, Wenxi (State Key Laboratory of Multiphase Flow in Power Engineering, Shaanxi Key Lab of Advanced Nuclear Energy and Technology, School of Nuclear Science and Technology, Xi'an Jiaotong University) ;
  • Qiu, Suizheng (State Key Laboratory of Multiphase Flow in Power Engineering, Shaanxi Key Lab of Advanced Nuclear Energy and Technology, School of Nuclear Science and Technology, Xi'an Jiaotong University) ;
  • Su, Guanghui (State Key Laboratory of Multiphase Flow in Power Engineering, Shaanxi Key Lab of Advanced Nuclear Energy and Technology, School of Nuclear Science and Technology, Xi'an Jiaotong University)
  • Received : 2021.10.04
  • Accepted : 2022.02.13
  • Published : 2022.08.25

Abstract

Deeply understanding the phase change of thin liquid sodium film inside wick pore is very important for further studying high-temperature sodium heat pipe's heat transfer. For the first time, the evaporation and condensation of thin liquid sodium film are investigated by the Lennard-Jones potential of molecular dynamics. Based on the startup and normal operation of the sodium heat pipe, three different cases are simulated. First, the equilibrium is achieved and the Mass Accommodation Coefficients of the three cases are 0.3886, 0.2119, 0.2615 respectively. Secondly, the non-equilibrium is built. The change of liquid film thickness, the number of gas atoms, the net evaporation flux (Jnet), the heat transfer coefficient (h) at the liquid-gas interface are acquired. Results indicate that the magnitude of the Jnet and the h increase with the basic equilibrium temperature. In 520-600 K (the startup of the heat pipe), the h has approached 5-6 W m-2 K-1 while liquid film thickness is in 11-13 nm. The fact shows that during the initial startup of the sodium heat pipe, the thermal resistance at the liquid-gas interface can't be negligible. This work is the complement and extension for macroscopic investigation of heat transfer inside sodium heat pipe. It can provide a reference for further numerical simulation and optimal design of the sodium heat pipe in the future.

Keywords

Acknowledgement

This work is carried out under the financial support of a project funded by the National Natural Science Foundation of China (No.U2067208) and China Postdoctoral Science Foundation (No. BX2021236).

References

  1. C.C. Addison, The Chemistry of the Liquid Alkali Metals, Wiley, Chichester, 1984.
  2. J.L. Dye, The alkali metals: 200 years of surprises, Philos. Trans. A Math Phys. Eng. Sci. 373 (2015).
  3. K. Aoto, P. Dufour, Y. Hongyi, J.P. Glatz, Y. Kim, Y. Ashurko, R. Hill, N. Uto, A summary of sodium-cooled fast reactor development, Prog. Nucl. Energy 77 (2014) 247-265. https://doi.org/10.1016/j.pnucene.2014.05.008
  4. D.H. Yonghee Kim, A Compact Sodium-Cooled Traveling Wave Reactor, Transactions of the Korean Nuclear Society Autumn Meeting, Gyeongju, Korea, 2011.
  5. B.S. Triplett, E.P. Loewen, B.J. Dooies, PRISM: a competitive small modular sodium-cooled reactor, Nucl. Technol. 178 (2012) 186-200. https://doi.org/10.13182/NT178-186
  6. R.S. Reid, SAFE alkali metal heat pipe reliability, AIP Conf. Proc. (2003) 114-121.
  7. A. Faghri, Heat pipes: review, opportunities and challenges, Front. Heat Pipes (2014) 5.
  8. C.T.W.G. Kara, L. Walker, Alkali Metal Heat Pipes for Space Fission Power, Proceedings of Nuclear and Emerging Technologies for Space 2013, Albuquerque, NM, 2013.
  9. B.H. Yan, C. Wang, L.G. Li, The technology of micro heat pipe cooled reactor: a review, Ann. Nucl. Energy 135 (2020) 106948. https://doi.org/10.1016/j.anucene.2019.106948
  10. S. Wu, B. Cao, L. Xiao, Y. Li, Parametric study on flow and heat transfer characteristics of porous wick evaporator based on AMTEC, J. Mech. Sci. Technol. 26 (2012) 973-981. https://doi.org/10.1007/s12206-011-1250-x
  11. J. Pacio, A. Fritsch, C. Singer, R. Uhlig, Liquid metals as efficient coolants for high-intensity point-focus receivers: implications to the design and performance of next-generation CSP systems, Energy Proc. 49 (2014) 647-655. https://doi.org/10.1016/j.egypro.2014.03.070
  12. P. Yu, C. Huang, L. Liu, H. Guo, C. Liu, Heat and mass transfer characteristics of alkali metals in a combined wick of high-temperature heat pipe, Fluid Dynam. Mater. Process. 16 (2020) 267-280. https://doi.org/10.32604/fdmp.2020.06528
  13. S.V.G.A. Hao Wang, Characteristics OF an evaporating thin film IN a microchannel, in: 2006 ASME International Mechanical Engineering Congress and Exposition, 2006. Chicago, IIIinois, USA.
  14. J. Yu, H. Wang, A molecular dynamics investigation on evaporation of thin liquid films, Int. J. Heat Mass Tran. 55 (2012) 1218-1225. https://doi.org/10.1016/j.ijheatmasstransfer.2011.09.035
  15. F.C.P.S. Xiang Yin, Multi-scale Simulation on Dynamic Performance of an Integrated Pumping and Compression Evaporative Electronic Cooling System, Applied Thermal Engineering, 2018, pp. 318-328.
  16. Y. Luo, W. Liu, J. Gou, Multiscale simulation of a novel leaf-vein-inspired gradient porous wick structure, J. Bionic Eng. 16 (2019) 828-841. https://doi.org/10.1007/s42235-019-0100-x
  17. L. Zhang, J. Ouyang, S. Zheng, Multiscale analysis and numerical simulation for stability of the incompressible flow of a Maxwell fluid, Appl. Math. Model. 34 (2010) 763-775. https://doi.org/10.1016/j.apm.2009.06.020
  18. Y.B. Jo, S. Park, J. Park, E.S. Kim, Numerical simulation on LMR molten-core centralized sloshing benchmark experiment using multi-phase smoothed particle hydrodynamics, Nucl. Eng. Technol. 53 (2021) 752-762. https://doi.org/10.1016/j.net.2020.07.039
  19. O. Hogblom, Multiscale Simulation Methods for Thermoelectric Generators, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, Gothenburg, 2016.
  20. L. Yin, H. Liu, W. Liu, Capillary character and evaporation heat transfer in the wicks of high temperature liquid metal heat pipe, Appl. Therm. Eng. 175 (2020) 115284. https://doi.org/10.1016/j.applthermaleng.2020.115284
  21. K. Kihm, E. Kirchoff, M. Golden, J. Rosenfeld, S. Rawal, D. Pratt, A. Swanson, H. Bilheux, L. Walker, S. Voisin, D.S. Hussey, D.L. Jacobson, Neutron imaging of alkali metal heat pipes, Phys. Procedia 43 (2013) 323-330. https://doi.org/10.1016/j.phpro.2013.03.038
  22. H. Yi, Effect of Disjoining Pressure and Working Fluid on Multi-Scale Modeling for Evaporative Liquid Metal Capillary, 'Vol.' Master of Science Degree, University of Tennessee, 2013. Knoxville.
  23. Jr J.B. Tipton, Unique Characteristics of Liquid Metal Extended Meniscus Evaporation, 'Vol.' Doctor of Philosophy Degree, The University of Tennessee, 2009. Knoxville.
  24. R. Liu, Z. Liu, Study of boiling heat transfer on concave hemispherical nanostructure surface with MD simulation, Int. J. Heat Mass Tran. 143 (2019) 118534. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118534
  25. D. Huang, X. Quan, P. Cheng, An investigation on vapor condensation on nanopillar array surfaces by molecular dynamics simulation, Int. Commun. Heat Mass Tran. 98 (2018) 232-238. https://doi.org/10.1016/j.icheatmasstransfer.2018.08.020
  26. H. Hu, Y. Sun, Effect of nanostructures on heat transfer coefficient of an evaporating meniscus, Int. J. Heat Mass Tran. 101 (2016) 878-885. https://doi.org/10.1016/j.ijheatmasstransfer.2016.05.092
  27. Z. Liang, T. Biben, P. Keblinski, Molecular simulation of steady-state evaporation and condensation: validity of the Schrage relationships, Int. J. Heat Mass Tran. 114 (2017) 105-114. https://doi.org/10.1016/j.ijheatmasstransfer.2017.06.025
  28. Y. Chen, Q. Cao, J. Li, B. Yu, W. Tao, Effects of simulation system on the phase transition behavior of liquid film: a molecular dynamics study, J. Mol. Liq. 311 (2020) 113306. https://doi.org/10.1016/j.molliq.2020.113306
  29. J. Gonzalez, J. Ortega, Z. Liang, Prediction of thermal conductance at liquid-gas interfaces using molecular dynamics simulations, Int. J. Heat Mass Tran. 126 (2018) 1183-1192. https://doi.org/10.1016/j.ijheatmasstransfer.2018.06.088
  30. Q. Cao, Y. Chen, W. Shao, X. Ma, C. Zheng, Z. Cui, Y. Liu, B. Yu, The effect of foreign particles on liquid film evaporation at the nanoscale: a molecular dynamics simulation, J. Mol. Liq. 319 (2020) 114218. https://doi.org/10.1016/j.molliq.2020.114218
  31. Y.W. Wu, C. Pan, Molecular dynamics simulation of thin film evaporation of Lennard-Jones liquid, Nanoscale Microscale Thermophys. Eng. 10 (2006) 157-170. https://doi.org/10.1080/10893950600643030
  32. K.Y.Y.K. Mitsuhiro Matsumoto, Microscopic features of evaporation and condensation at liquid surfaces: molecular dynamics simulation, Thermal Sci. Eng. 2 (1994) 66-69.
  33. H. Liu, X. Qin, S. Ahmad, Q. Tong, J. Zhao, Molecular dynamics study about the effects of random surface roughness on nanoscale boiling process, Int. J. Heat Mass Tran. 145 (2019) 118799. https://doi.org/10.1016/j.ijheatmasstransfer.2019.118799
  34. T. Ishiyama, T. Yano, S. Fujikawa, Molecular dynamics study of kinetic boundary condition at an interface between argon vapor and its condensed phase, Phys. Fluids 16 (1994) 2899-2906, 2004. https://doi.org/10.1063/1.1763936
  35. Y. Yuan, J. Zhang, D. Wang, Y. Xu, B. Bhandari, Molecular dynamics simulation on moisture diffusion process for drying of porous media in nanopores, Int. J. Heat Mass Tran. 121 (2018) 555-564. https://doi.org/10.1016/j.ijheatmasstransfer.2017.12.126
  36. T. Ishiyama, T. Yano, S. Fujikawa, Molecular dynamics study of kinetic boundary condition at an interface between a polyatomic vapor and its condensed phase, Phys. Fluids 16 (1994) 4713-4726, 2004. https://doi.org/10.1063/1.1811674
  37. S. Takahama, L.M. Russell, A molecular dynamics study of water mass accommodation on condensed phase water coated by fatty acid monolayers, J. Geophys. Res. Atmos. 116 (2011) (n/a-n/a).
  38. A.P. Bhansali, Y. Bayazitoglu, S. Maruyama, Molecular dynamics simulation of an evaporating sodium droplet, Int. J. Therm. Sci. 38 (1999) 66-74. https://doi.org/10.1016/S0035-3159(99)80017-8
  39. C. Wang, D. Zhang, S. Qiu, W. Tian, Y. Wu, G. Su, Study on the characteristics of the sodium heat pipe in passive residual heat removal system of molten salt reactor, Nucl. Eng. Des. 265 (2013) 691-700. https://doi.org/10.1016/j.nucengdes.2013.09.023
  40. Steve, Fast parallel algorithms for short-range molecular dynamics, J. Comput. Phys. 1 (1995) 1-19. https://doi.org/10.1016/0021-9991(66)90009-X
  41. T. Halicioglu, G.M. Pound, Calculation of potential energy parameters form crystalline state properties, Physica status solidi. A, Applied research 30 (1975) 619-623. https://doi.org/10.1002/pssa.2210300223
  42. J.R. Errington, Direct calculation of liquid-vapor phase equilibria from transition matrix Monte Carlo simulation, J. Chem. Phys. 118 (2003) 9915-9925. https://doi.org/10.1063/1.1572463
  43. V.K. Shen, J.R. Errington, Metastability and instability in the Lennard-Jones fluid investigated by transition-matrix Monte Carlo, J. Phys. Chem. B 108 (2004) 19595-19606. https://doi.org/10.1021/jp040218y
  44. J.K.F.L. Leibowitz, Thermodynamic and Transport Properties of Sodium Liquid and Vapor, Argonne National Laboratory, Illinois, 1995.
  45. A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO-the Open Visualization Tool, Model. Simulat. Mater. Sci. Eng. 18 (2010) 15012. https://doi.org/10.1088/0965-0393/18/1/015012
  46. Z. Liang, P. Keblinski, Molecular simulation of steady-state evaporation and condensation in the presence of a non-condensable gas, J. Chem. Phys. 148 (2018) 64708. https://doi.org/10.1063/1.5020095
  47. Z. Liang, A. Chandra, E. Bird, P. Keblinski, A molecular dynamics study of transient evaporation and condensation, Int. J. Heat Mass Tran. 149 (2020) 119152. https://doi.org/10.1016/j.ijheatmasstransfer.2019.119152
  48. R.K.J.S.C. Saxena, Thermal Accommodation and Adsorption Coefficients of Gases, Hemisphere Publishing Corporation, New York, 1989.
  49. A. Faghri, Heat-Pipe-Science-and-Technology-Amir-Faghri, Taylor & Francis, Washington, 1995.
  50. Z. Wang, R. Han, K. Guo, C. Wang, D. Zhang, W. Tian, S. Qiu, G. Su, Molecular dynamics simulation of the evaporation of liquid sodium film in the presence of non-condensable gas, Ann. Nucl. Energy 170 (2022), 109005. https://doi.org/10.1016/j.anucene.2022.109005