DOI QR코드

DOI QR Code

Study on the effect of long-term high temperature irradiation on TRISO fuel

  • Received : 2021.10.20
  • Accepted : 2022.02.27
  • Published : 2022.08.25

Abstract

In the core of the WWR-K reactor, a long-term irradiation of tristructural isotopic (TRISO)-coated fuel particles (CFPs) with a UO2 kernel was carried out under high-temperature gas-cooled reactor (HTGR)-like operating conditions. The temperature of this TRISO fuel during irradiation varied in the range of 950-1100 ℃. A fission per initial metal atom (FIMA) of uranium burnup of 9.9% was reached. The release of gaseous fission products was measured in-pile. The release-to-birth ratio (R/B) for the fission product isotopes was calculated. Aspects of fuel safety while achieving deep fuel burnup are important and relevant, including maintaining the integrity of the fuel coatings. The main mechanisms of fuel failure are kernel migration, silicon carbide corrosion by palladium, and gas pressure increase inside the CFP. The formation of gaseous fission products and carbon monoxide leads to an increase in the internal pressure in the CFP, which is a dominant failure mechanism of the coatings under this level of burnup. Irradiated fuel compacts were subjected to electric dissociation to isolate the CFPs from the fuel compacts. In addition, nondestructive methods, such as X-ray radiography and gamma spectrometry, were used. The predicted R/B ratio was evaluated using the fission gas release model developed in the high-temperature test reactor (HTTR) project. In the model, both the through-coatings of failed CFPs and as-fabricated uranium contamination were assumed to be sources of the fission gas. The obtained R/B ratio for gaseous fission products allows the finalization and validation of the model for the release of fission products from the CFPs and fuel compacts. The success of the integrity of TRISO fuel irradiated at approximately 9.9% FIMA was demonstrated. A low fuel failure fraction and R/B ratios indicated good performance and reliability of the studied TRISO fuel.

Keywords

Acknowledgement

This work has been supported by Science Committee of the Ministry of Education and Science of the Republic of Kazakhstan, under the project AP08052726. This work has been supported by International Science and Technology Center, Nur-Sultan, Kazakhstan, under the regular projects No. K-1797 and K-2222.

References

  1. M.S. T Price, The Dragon Project origins, achievements and legacies, Nucl. Eng. Des. 251 (2012) 60-68. https://doi.org/10.1016/j.nucengdes.2011.12.024
  2. P.A. Demkowicz, et al., Coated particle fuel: historical perspectives and current progress, J. Nucl. Mater. 515 (2019) 434-450. https://doi.org/10.1016/j.jnucmat.2018.09.044
  3. M.J. Kania, H. Nabielek, H. Nickel, Coated particle fuels for high-temperature reactors, in: Materials Science and Technology, Wiley, 2015.
  4. D.A. Petti, et al., TRISO-coated particle fuel performance, in: R.J.M. Konings (Ed.), Comprehensive Nuclear Materials, 3, Elsevier, Amsterdam, 2012, pp. 151-213.
  5. High Temperature Gas Cooled Reactor Fuels and Materials, IAEA, TECDOC, 2010, p. 1645.
  6. K. Verfondern, H. Nabielek, J.M. Kendall, Coated particle fuel for high temperature gas cooled reactors, Nucl. Eng. Technol. 39 (2007) 603-616. https://doi.org/10.5516/NET.2007.39.5.603
  7. D.A. Petti, et al., Key differences in the fabrication, irradiation and high temperature accident testing of US and German TRISO-coated particle fuel, and their implications on fuel performance, Nucl. Eng. Des. 222 (2003) 281-297. https://doi.org/10.1016/S0029-5493(03)00033-5
  8. Zuoyi Zhang, Haitao Wang, Yujie Dong, Li Fu future development of Modular HTGR in China after HTR-PM, in: Proceedings of the HTR 2014 Weihai, China, October 27-31, 2014. Paper HTR2014-11456.
  9. Zuoyi Zhang, Yujie Dong, Li Fu, Zhengming Zhang, Haitao Wang, Xiaojin Huang, Li Hong, Bing Liu, Xinxin Wu, Hong Wang, Xingzhong Diao, Haiquan Zhang, Jinhua Wang, The Shandong Shidao Bay 200 MWe high-temperature gas-cooled reactor Pebble-bed Module (HTR-PM) demonstration power plant: an engineering and technological innovation, Engineering 2 (2016) 112-118. https://doi.org/10.1016/j.eng.2016.01.020
  10. Xu Yuanhui, Hu Shouying, Li Fu, Yu Suyuan, High Temperature Reactor Development in China, Progress in Nuclear Energy, 47, 2005, pp. 260-270, https://doi.org/10.1016/j.pnucene.2005.05.026. Issues 1-4.
  11. K. Kunitomi, S. Katanishi, S. Takada, T. Takizuka, X. Yan, Japan's future HTR-the GTHTR300, Nucl. Eng. Des. 233 (1-3) (2004) 309-327, https://doi.org/10.1016/j.nucengdes.2004.08.026.
  12. Tetsuo Nishihara, X. Yan, Yukio Tachibana, Taiju Shibata, Hirofumi Ohashi, Shinji Kubo, Yoshitomo Inaba, Shigeaki Nakagawa, Minoru Goto, Shohei Ueta, Noriaki Hirota, Yoshiyuki Inagaki, Kazuhiko Iigaki, Shimpei Hamamoto, Kunitomi, Kazuhiko Excellent Feature of Japanese HTGR Technologies, JAEA-Technology, 2018, p. 182, https://doi.org/10.11484/jaea-technology-2018-004, 004.
  13. Young-WooLee, Park Ji-Yeon, Yeon, Kyung Ku Kim, Chae Jeong Woong, Ki Kim Bong, Goo Kim Young, Min Kim, Moon Sung Cho, Development of HTGR-coated particle fuel technology in Korea, Nucl. Eng. Des. 238 (2008) 2842-2853, https://doi.org/10.1016/j.nucengdes.2007.11.023.
  14. Won Jae Lee, Progress of nuclear hydrogen Program in Korea, in: Proceedings of the 3rd Nuclear Hydrogen Workshop Nuclear Hydrogen for Green Horizon, 2009, p. 29.
  15. Bong Goo Kim, Sunghwan Yeo, Kyung-Chai Jeong, Yeon-Ku Kim, Young Woo Lee, Moon Sung Cho, The first irradiation testing and PIE or TRISO-coated particle fuel in Korea, Nucl. Eng. Des. 329 (2018) 34-45, https://doi.org/10.1016/j.nucengdes.2018.01.037.
  16. V.I. Kostin, N.G. Kodochigov, S.E. Belov, A.V. Vasyaev, V.F. Golovko, A. Shenoj, Development of GT-MGR plant power conversion unit design, Atom. Energy 102 (1) (2007) 57-63.
  17. N.N. Ponomarev-Stepnoi, N.G. Abrosimov, A.V. Vasyaev, M.E. Ganin, V.F. Golovko, D.L. Zverev, V.V. Petrunin, Similarity of high-temperature gas-cooled reactor technologies and designs in Russia and USA, Atom. Energy 108 (2) (2010) 89-96, https://doi.org/10.1007/s10512-010-9261-8.
  18. C. Andrew, Kadak the status of the US high-temperature gas reactors, Engineering 2 (2016) 119-123. https://doi.org/10.1016/j.eng.2016.01.026
  19. Paul A. Demkowicz, John D. Hunn, Scott A. Ploger, Robert N. Morris, Charles A. Baldwin, Jason M. Harp, Philip L. Winston, Tyler J. Gerczak, J. Isabella, van Rooyen, C. Fred, Montgomery, M. Chinthaka, Silva Irradiation performance of AGR-1 high temperature reactor fuel, Nucl. Eng. Des. 306 (2016) 2-13, https://doi.org/10.1016/j.nucengdes.2015.09.011.
  20. Marc A. Rosen, Seama Koohi-Fayegh the prospects for hydrogen as an energy carrier: an overview of hydrogen energy and hydrogen energy systems, Energ. Ecol. Environ. 1 (1) (2016) 10-29, https://doi.org/10.1007/s40974-016-0005-z.
  21. Karl Verfondern Nuclear Energy for Hydrogen Production 58, 2007, p. 199.
  22. Technology Roadmap Update for Generation IV Nuclear Energy Systems, OECD Nuclear Energy Agency, Europe, 2014.
  23. P. Blaise, Collin AGR-2 Irradiation Test Final As-Run Report, 2014. INL/EXT-14-32277.
  24. Liu Dong, Steven Knol, Jon Ell, Harold Barnard, Mark Daviese, A. Jan, Vreeling, O. Robert, Ritchie, X-ray tomography study on the crushing strength and irradiation behaviour of dedicated tristructural isotropic nuclear fuel particles at 1000 ℃, Mater. Des. 187 (2020) 108382, https://doi.org/10.1016/j.matdes.2019.108382.
  25. S. Ueta, J. Aihara, N. Sakaba, M. Honda, N. Furihata, K. Sawa, Fuel performance under continuous high-temperature operation of the HTTR, J. Nucl. Sci. Technol. 51 (2014) 1345-1354, 11-12: R&D for HTGR technology utilizing Japan's HTTR. https://doi.org/10.1080/00223131.2014.926230
  26. Shohei Ueta, Jun Aihara, Asset Shaimerdenov, Daulet Dyussambayev, Shamil Gizatulin, Petr Chakrov, Nariaki Sakaba Irradiation test and post irradiation examination of the high burnup HTGR fuel, in: Proceeding of 8th International Topical Meeting on High Temperature Reactor Technology, HTR, USA, 2016, pp. 246-252. November 6-10, 2016 Las Vegas, NV.
  27. A.A. Shaimerdenov, F.M. Arinkin, Sh Kh Gizatulin, D.S. Dyussambayev, S.N. Koltochnik, P.V. Chakrov, L.V. Chekushina, Conversion of WWR-K research reactor to LEU fuel, Atom. Energy 123 (2017) 15-20, https://doi.org/10.1007/s10512-017-0294-0.
  28. A.A. Shaimerdenov, D.A. Nakipov, F.M. Arinkin, et al., Phys. Atom. Nuclei 81 (2018) 1408, https://doi.org/10.1134/S1063778818100162.
  29. I. Tazhibayeva, M. Skakov, V. Baklanov, E. Koyanbayev, A. Miniyazov, T. Kulsartov, E. Nesterov, Study of properties of tungsten irradiated in hydrogen atmosphere, Nucl. Fusion 57.12 (2017) 126062. https://doi.org/10.1088/0029-5515/57/12/126062
  30. Y. Chikhray, V. Shestakov, O. Maksimkin, L. Turubarova, I. Osipov, T. Kulsartov, K. Tsuchiya, Study of Li2TiO3+ 5 mol% TiO2 lithium ceramics after long-term neutron irradiation, J. Nucl. Mater. 386 (2009) 286-289. https://doi.org/10.1016/j.jnucmat.2008.12.111
  31. P. Blynskiy, Y. Chikhray, T. Kulsartov, M. Gabdullin, Z. Zaurbekova, G. Kizane, A. Shaimerdenov, Experiments on tritium generation and yield from lithium ceramics during neutron irradiation, Int. J. Hydrogen Energy 46 (13) (2021) 9186-9192. https://doi.org/10.1016/j.ijhydene.2020.12.224
  32. T. Kulsartov, Z. Zaurbekova, M. Gabdullin, E. Nesterov, N. Varlamova, A. Novodvorskiy, A. Evdakova, Simulation of hydrogen isotopes absorption by metals under uncompensated pressure conditions, Int. J. Hydrogen Energy 44.55 (2019) 29304-29309. https://doi.org/10.1016/j.ijhydene.2019.03.091
  33. I.L. Tazhibayeva, T.V. Kulsartov, Y.Y. Baklanova, Z.A. Zaurbekova, Y. Gordienko, V. Y, Ponkratov Reactor studies of tritium release from lead-lithium eutectic Li15. 7Pb with deuterium over the sample, Nuclear Mater. Energy 25 (2020) 100868. https://doi.org/10.1016/j.nme.2020.100868
  34. I.L. Tazhibayeva, T.V. Kulsartov, Z. Zaurbekova, Y. Gordienko, V. Y, Ponkratov Reactor studies of hydrogen isotopes interaction with lithium CPS using dynamic sorption technique, Fusion Eng. Des. 146 (2019) 402-405. https://doi.org/10.1016/j.fusengdes.2018.12.077
  35. L. Chekushina, D. Dyussambaev, A. Shaimerdenov, K. Tsuchiya, T. Takeuchi, H. Kawamura, T. Kulsartov, Properties of tritium/helium release from hot isostatic pressed beryllium of various trademarks, J. Nucl. Mater. 452 (1-3) (2014) 41-45. https://doi.org/10.1016/j.jnucmat.2014.04.031
  36. ANSYS FLUENT UDF Manual, ANSYS Inc. - Release 14.0. - USA, 2011, p. 592.
  37. S. Ueta, J. Sumita, K. Emori, M. Takahashi, K. Sawa, Fuel and fission gas behavior during rise-to-power test of the high temperature engineering test reactor (HTTR), J. Nucl. Sci. Technol. 40 (2003) 679. https://doi.org/10.3327/jnst.40.679
  38. S. Ueta, M. Umeda, K. Sawa, S. Sozawa, M. Shimizu, Y. Ishigaki, H. Obata, Preliminary test results for post irradiation examination on the HTTR fuel, J. Nucl. Sci. Technol. 44 (2007) 1081. https://doi.org/10.3327/jnst.44.1081
  39. Asset Shaimerdenov, Shamil Gizatulin, Yergazy Kenzhin, Daulet Dyussambayev, Shohei Ueta, Jun Aihara, Taiju Shibata investigation of irradiated properties of extended burnup TRISO fuel, in: Proceeding of 9th International Topical Meeting on High Temperature Reactor Technology (HTR 2018), Warsaw, Poland, Paper HTR, October 8-10, 2018, 2018-182.