DOI QR코드

DOI QR Code

Experimental setup for elemental analysis using prompt gamma rays at research reactor IBR-2

  • Hramco, C. (Frank Laboratory of Neutron Physics (FLNP), Joint Institute for Nuclear Research (JINR)) ;
  • Turlybekuly, K. (Frank Laboratory of Neutron Physics (FLNP), Joint Institute for Nuclear Research (JINR)) ;
  • Borzakov, S.B. (Frank Laboratory of Neutron Physics (FLNP), Joint Institute for Nuclear Research (JINR)) ;
  • Gundorin, N.A. (Frank Laboratory of Neutron Physics (FLNP), Joint Institute for Nuclear Research (JINR)) ;
  • Lychagin, E.V. (Frank Laboratory of Neutron Physics (FLNP), Joint Institute for Nuclear Research (JINR)) ;
  • Nehaev, G.V. (Frank Laboratory of Neutron Physics (FLNP), Joint Institute for Nuclear Research (JINR)) ;
  • Muzychka, A. Yu (Frank Laboratory of Neutron Physics (FLNP), Joint Institute for Nuclear Research (JINR)) ;
  • Strelkov, A.V. (Frank Laboratory of Neutron Physics (FLNP), Joint Institute for Nuclear Research (JINR)) ;
  • Teymurov, E. (Frank Laboratory of Neutron Physics (FLNP), Joint Institute for Nuclear Research (JINR))
  • Received : 2021.10.21
  • Accepted : 2022.02.21
  • Published : 2022.08.25

Abstract

The new experimental setup has been built at the 11b channel of the IBR-2 research reactor at FLNP, JINR, to study the elemental composition of samples by registration of prompt gamma emission during thermal neutron capture. The setup consists of a curved mirror neutron guide and a radiation-resistant HPGe high-purity germanium detector. The detector is surrounded by lead shielding to suppress the natural background gamma level. The sample is placed in a vacuum channel and surrounded by a LiF shield to suppress the gamma background generated by scattered neutrons. This work presents characteristics of the experimental setup. An example of hydrogen concentration determining in a diamond powder made by detonation synthesis is given and on its basis, the sensitivity of the setup is calculated being ~4 ㎍.

Keywords

Acknowledgement

The work partially was supported by the grants RFFI-18-29-19039, CREMLINplus Grant agreement 871072, and JINR AYSS No 21-402-10.

References

  1. R.M. Lindstrom, Z. Revay, Prompt gamma neutron activation analysis (PGAA): recent developments and applications, J. Radioanal. Nucl. Chem. 314 (2017) 843-858, https://doi.org/10.1007/s10967-017-5483-8.
  2. C. Lim, B. Sowerby, On-line bulk elemental analysis in the resource industries using neutron-gamma techniques, J. Radioanal. Nucl. Chem. 264 (2005) 15-19, https://doi.org/10.1007/s10967-005-0668-y.
  3. S. Aghara, S. Venkatraman, A. Manthiram, et al., Investigation of hydrogen content in chemically delithiated lithium-ion battery cathodes using prompt gamma activation analysis, J. Radioanal. Nucl. Chem. 265 (2005) 321-328, https://doi.org/10.1007/s10967-005-0828-0.
  4. G.L. Molnar, Zs Revay, T. Belgya, Non-destructive interrogation of uranium using PGAA, Nucl. Instrum. Methods Phys. Res., Sect. B 213 (2004) 389-393, https://doi.org/10.1016/S0168-583X(03)01656-2.
  5. M. Kataoka, A. Kuno, M. Matsuo, A study on vertical distribution of elements and their chemical states in Yatsu tideland sediments, J. Radioanal. Nucl. Chem. 255 (2003) 283-286, https://doi.org/10.1023/A:1022536200027.
  6. Nikolay Kardjilov, Giulia Festa, Neutron Methods for Archaeology and Cultural Heritage, Springer International Publishing Switzerland, 2017, https://doi.org/10.1007/978-3-319-33163-8.
  7. Research Reactor Database (RRDB), https://nucleus.iaea.org/rrdb/#/home.
  8. Y. Toh, M. Oshima, K. Furutaka, et al., Development of a neutron beam line and detector system for multiple prompt gamma-ray analysis, J. Radioanal. Nucl. Chem. 278 (2008) 703-706, https://doi.org/10.1007/s10967-008-1508-7.
  9. E.A. Mackey, D.L. Anderson, P.J. Liposky, R.M. Lindstrom, H. Chen-Mayer, G.P. Lamaze, New thermal neutron prompt g-ray activation analysis instrument at the national institute of standards and technology center for neutron research, Nucl. Instrum. Methods Phys. Res., Sect. B 226 (2004) 426-440, https://doi.org/10.1016/j.nimb.2004.05.038.
  10. Zs Revay, P. Kudejov a, K. Kleszcz, S. Sollradl, Christoph Genreith, In-beam activation analysis facility at MLZ, Garching, Nucl. Instrum. Methods Phys. Res., Sect. A 799 (2015) 114-123, https://doi.org/10.1016/j.nima.2015.07.063.
  11. T. Belgya, Prompt gamma activation analysis at the budapest research reactor, Phys. Procedia 31 (2012) 99-109, https://doi.org/10.1016/j.phpro.2012.04.014.
  12. A.R. Krylov, E.V. Lychagin, A.Y. Muzychka, et al., Study of bound hydrogen in powders of diamond nanoparticles, Crystallogr. Rep. 56 (2011) 1186-1191, https://doi.org/10.1134/S1063774511070169.
  13. V. Shvetsov, Pulsed fast reactor IBR-2 after modernization, J. Synch. Investig. 14 (2020) S213-S217, https://doi.org/10.1134/S1027451020070435.
  14. https://www.nndc.bnl.gov/capgam/.
  15. http://nucleardata.nuclear.lu.se/toi/radSearch.asp.
  16. Lloyd A. Currie, Limits for qualitative detection and quantitative determination. Application to radiochemistry, Anal. Chem. 40 (1968) 586-593, https://doi.org/10.1021/ac60259a007.
  17. Zsolt Revay, Determining elemental composition using prompt γ activation analysis, Anal. Chem. 81 (2009) 6851-6859, https://doi.org/10.1021/ac9011705.
  18. S. Garti, J. Dumazert, R. Coulon, Q. Lecomte, F. Carrel, G. Corre, M. Imbault, C. Theroine, C. Jamme, Characterizing low-activity waste containers: a case study for Compton Suppression Systems under challenging signal-to-noise ratio, Nucl. Instrum. Methods Phys. Res., Sect. A 949 (2020) 162806, https://doi.org/10.1016/j.nima.2019.162806.
  19. Sara Garti, Romain Coulon, HPGe/BGO Compton suppression system: Monte Carlo study of radiation monitoring system for failed fuel detection in sodium-cooled fast reactors, Appl. Radiat. Isot. 174 (2021) 109737, https://doi.org/10.1016/j.apradiso.2021.109737.
  20. Yuanqing Fan, Qi Li, Ying Wang, Yungang Zhao, Xinjun Zhang, Huaimao Jia, Yinzhong Chang, Shujiang Liu, Xianyun Ai, Shilian Wang, Assessment of a compton-suppressed spectrometer for measurement of radioactive xenon isotopes, Appl. Radiat. Isot. 172 (2021) 109669, https://doi.org/10.1016/j.apradiso.2021.109669.