DOI QR코드

DOI QR Code

Effects of pulsed laser surface remelting on microstructure, hardness and lead-bismuth corrosion behavior of a ferrite/martensitic steel

  • Wang, Hao (Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China) ;
  • Yuan, Qian (College of Materials Science and Engineering, Chongqing University of Technology) ;
  • Chai, Linjiang (College of Materials Science and Engineering, Chongqing University of Technology) ;
  • Zhao, Ke (Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China) ;
  • Guo, Ning (Faculty of Materials and Energy, Southwest University) ;
  • Xiao, Jun (Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China) ;
  • Yin, Xing (Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China) ;
  • Tang, Bin (Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China) ;
  • Li, Yuqiong (MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University) ;
  • Qiu, Shaoyu (Science and Technology on Reactor Fuel and Materials Laboratory, Nuclear Power Institute of China)
  • Received : 2021.07.28
  • Accepted : 2021.12.20
  • Published : 2022.06.25

Abstract

A typical ferritic/martensitic (F/M) steel sheet was subjected to pulsed laser surface remelting (LSR) and corrosion test in lead-bismuth eutectic (LBE) at 550 ℃. There present two modification zones with distinct microstructures in the LSRed specimen: (1) remelted zone (RZ) consisting of both bulk δ-ferrite grains and martensitic plates and (2) heat-affected zone (HAZ) below the RZ, mainly composed of martensitic plates and high-density precipitates. Martensitic transformation occurs in both the RZ and the HAZ with the Kurdjumov-Sachs and Nishiyama-Wassermann orientation relationships followed concurrently, resulting in scattered orientations and specific misorientation characteristics. Hardnesses of the RZ and the HAZ are 364 ± 7 HV and 451 ± 15 HV, respectively, considerably higher than that of the matrix (267 ± 3 HV). In oxygen-saturated and oxygen-depleted LBE, thicknesses of oxide layers developed on both the as-received and the LSRed specimens increase with prolonging corrosion time (oxide layers always thinner under the oxygen-depleted condition). The corrosion resistance of the LSRed F/M steel in oxygen-saturated LBE is improved, which can be attributed to the grain-refinement accelerated formation of dense Fe-Cr spinel. In oxygen-depleted LBE, the growth of oxide layers is very low with both types of specimens showing similar corrosion resistance.

Keywords

Acknowledgement

This work was supported by the Scientific Research Program for Young Talents of China National Nuclear Corporation (K301007022), the Chongqing Key Laboratory of Materials Surface & Interface Science (KFJJ2005), the Open Foundation of Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials at Guangxi University (2021GXYSOF06).

References

  1. O. Yeliseyeva, V. Tsisar, G. Benamati, Influence of temperature on the interaction mode of T91 and AISI 316L steels with Pb-Bi melt saturated by oxygen, Corrosion Sci. 50 (2008) 1672-1683. https://doi.org/10.1016/j.corsci.2008.02.006
  2. C. Schroer, O. Wedemeyer, J. Novotny, A. Skrypnik, J. Konys, Performance of 9% Cr steels in flowing lead-bismuth eutectic at 450 and 550 ℃, and 10-6 mass% dissolved oxygen, Nucl. Eng. Des. 280 (2014) 661-672. https://doi.org/10.1016/j.nucengdes.2014.01.023
  3. X. Gong, P. Marmy, B. Verlinden, M. Wevers, M. Seefeldt, Low cycle fatigue behavior of a modified 9Cr-1Mo ferritic-martensitic steel in lead-bismuth eutectic at 350℃ - effects of oxygen concentration in the liquid metal and strain rate, Corrosion Sci. 94 (2015) 377-391. https://doi.org/10.1016/j.corsci.2015.02.022
  4. J. Liu, Q. Shi, H. Luan, W. Yan, W. Sha, W. Wang, Y. Shan, K. Yang, Lead-bismuth eutectic corrosion behaviors of ferritic/martensitic steels in low oxygen concentration environment, Oxid. Metals 84 (2015) 383-395. https://doi.org/10.1007/s11085-015-9560-5
  5. G. Muller, A. Heinzel, J. Konys, G. Schumacher, A. Weisenburger, F. Zimmermann, V. Engelko, A. Rusanov, V. Markov, Results of steel corrosion tests in flowing liquid Pb/Bi at 420-600 ℃ after 2000 h, J. Nucl. Mater. 301 (2002) 40-46. https://doi.org/10.1016/S0022-3115(01)00725-5
  6. M. Yurechko, C. Schroer, A. Skrypnik, O. Wedemeyer, V. Tsisar, J. Konys, Steel T91 subjected to static stress in lead-bismuth eutectic at 450-550 ℃ and low oxygen concentration, J. Nucl. Mater. 512 (2018) 423-439. https://doi.org/10.1016/j.jnucmat.2018.09.056
  7. Y. Chen, Z. Hong, X. Zhang, M. Xia, Q. Yan, C. Ge, Enhanced creep resistance of Y-bearing 9Cr ferritic/martensitic steel via vacuum casting technique, J. Mater. Res. Technol. 8 (2019) 4588-4597. https://doi.org/10.1016/j.jmrt.2019.08.003
  8. E. Miorin, F. Montagner, V. Zin, D. Giuranno, E. Ricci, M. Pedroni, V. Spampinato, E. Vassallo, S.M. Deambrosis, Al rich PVD protective coatings: a promising approach to prevent T91 steel corrosion in stagnant liquid lead, Surf. Coating. Technol. 377 (2019) 124890. https://doi.org/10.1016/j.surfcoat.2019.124890
  9. Y. Dai, V. Boutellier, D. Gavillet, H. Glasbrenner, A. Weisenburger, W. Wagner, FeCrAlY and TiN coatings on T91 steel after irradiation with 72MeV protons in flowing LBE, J. Nucl. Mater. 431 (2012) 66-76. https://doi.org/10.1016/j.jnucmat.2011.11.006
  10. L. Chai, H. Wu, Z. Zheng, H. Guan, H. Pan, N. Guo, B. Song, Microstructural characterization and hardness variation of pure Ti surface-treated by pulsed laser, J. Alloys Compd. 741 (2018) 116-122. https://doi.org/10.1016/j.jallcom.2018.01.113
  11. J. Dai, T. Wang, L. Chai, X. Hu, L. Zhang, N. Guo, Characterization and correlation of microstructure and hardness of Ti-6Al-4V sheet surface-treated by pulsed laser, J. Alloys Compd. 826 (2020) 154243. https://doi.org/10.1016/j.jallcom.2020.154243
  12. L. Chai, H. Wu, S. Wang, K. Chen, T. Wang, J. Xia, Characterization of microstructure and hardness of a Zr-2.5Nb alloy surface-treated by pulsed laser, Mater. Chem. Phys. 198 (2017) 303-309. https://doi.org/10.1016/j.matchemphys.2017.06.032
  13. B. Mahmoudi, M.J. Torkamany, A.R.S.R. Aghdam, J. Sabbaghzade, Laser surface hardening of AISI 420 stainless steel treated by pulsed Nd:YAG laser, Mater. Des. 31 (2010) 2553-2560. https://doi.org/10.1016/j.matdes.2009.11.034
  14. G. Telasang, J. Dutta Majumdar, G. Padmanabham, I. Manna, Wear and corrosion behavior of laser surface engineered AISI H13 hot working tool steel, Surf. Coating. Technol. 261 (2015) 69-78. https://doi.org/10.1016/j.surfcoat.2014.11.058
  15. M. Moradi, M. KaramiMoghadam, High power diode laser surface hardening of AISI 4130: statistical modelling and optimization, Opt Laser. Technol. 111 (2019) 554-570. https://doi.org/10.1016/j.optlastec.2018.10.043
  16. X. Gong, P. Marmy, Y. Yin, The role of oxide films in preventing liquid metal embrittlement of T91 steel exposed to liquid lead-bismuth eutectic, J. Nucl. Mater. 509 (2018) 401-407. https://doi.org/10.1016/j.jnucmat.2018.07.018
  17. H.O. Nam, J. Lim, D.Y. Han, I.S. Hwang, Dissolved oxygen control and monitoring implementation in the liquid lead-bismuth eutectic loop: HELIOS, J. Nucl. Mater. 376 (2008) 381-385. https://doi.org/10.1016/j.jnucmat.2008.02.038
  18. A. Khorram, A. Davoodi Jamaloei, A. Jafari, M. Moradi, Nd:YAG laser surface hardening of AISI 431 stainless steel: mechanical and metallurgical investigation, Opt Laser. Technol. 119 (2019) 105617. https://doi.org/10.1016/j.optlastec.2019.105617
  19. K.-N. Jang, T.-K. Kim, K.-T. Kim, The effect of cooling rates on carbide precipitate and microstructure of 9CR-1MO oxide dispersion strengthened(ODS) steel, Nucl. Eng. Technol. 51 (2019) 249-256. https://doi.org/10.1016/j.net.2018.09.021
  20. W. Yan, W. Wang, Y.-Y. Shan, K. Yang, Microstructural stability of 9-12%Cr ferrite/martensite heat-resistant steels, Front. Mater. Sci. 7 (2013) 1-27. https://doi.org/10.1007/s11706-013-0189-5
  21. F.J. Humphreys, Review Grain and subgrain characterisation by electron backscatter diffraction, J. Mater. Sci. 36 (2001) 3833-3854. https://doi.org/10.1023/A:1017973432592
  22. S.I. Wright, M.M. Nowell, D.P. Field, A review of strain analysis using electron backscatter diffraction, Microsc. Microanal. 17 (2011) 316-329.
  23. M.K. Alam, M. Mehdi, R.J. Urbanic, A. Edrisy, Electron Backscatter Diffraction (EBSD) analysis of laser-cladded AISI 420 martensitic stainless steel, Mater. Char. 161 (2020) 110138. https://doi.org/10.1016/j.matchar.2020.110138
  24. S. Morito, X. Huang, T. Furuhara, T. Maki, N. Hansen, The morphology and crystallography of lath martensite in alloy steels, Acta Mater. 54 (2006) 5323-5331. https://doi.org/10.1016/j.actamat.2006.07.009
  25. E. Bouyne, H. Flower, T. Lindley, A. Pineau, Use of EBSD technique to examine microstructure and cracking in a bainitic steel, Scripta Mater. 39 (1998) 295-300. https://doi.org/10.1016/S1359-6462(98)00170-5
  26. A. Guo, R.D.K. Misra, J. Liu, L. Chen, X. He, S.J. Jansto, An analysis of the microstructure of the heat-affected zone of an ultra-low carbon and niobiumbearing acicular ferrite steel using EBSD and its relationship to mechanical properties, Mater. Sci. Eng. 527 (2010) 6440-6448. https://doi.org/10.1016/j.msea.2010.06.092
  27. G. Nolze, Irrational orientation relationship derived from rational orientation relationships using EBSD data, Cryst. Res. Technol. 43 (2008) 61-73. https://doi.org/10.1002/crat.200711058
  28. C.C. Kinney, K.R. Pytlewski, A.G. Khachaturyan, J.W. Morris, The microstructure of lath martensite in quenched 9Ni steel, Acta Mater. 69 (2014) 372-385. https://doi.org/10.1016/j.actamat.2014.01.058
  29. T. Karthikeyan, V. Thomas Paul, S. Saroja, A. Moitra, G. Sasikala, M. Vijayalakshmi, Grain refinement to improve impact toughness in 9Cr-1Mo steel through a double austenitization treatment, J. Nucl. Mater. 419 (2011) 256-262. https://doi.org/10.1016/j.jnucmat.2011.08.010
  30. J. Zhang, A review of steel corrosion by liquid lead and lead-bismuth, Corrosion Sci. 51 (2009) 1207-1227. https://doi.org/10.1016/j.corsci.2009.03.013
  31. R.L. Klueh, A.T. Nelson, Ferritic/martensitic steels for next-generation reactors, J. Nucl. Mater. 371 (2007) 37-52. https://doi.org/10.1016/j.jnucmat.2007.05.005
  32. Z. Ye, P. Wang, H. Dong, D. Li, Y. Zhang, Y. Li, Oxidation mechanism of T91 steel in liquid lead-bismuth eutectic: with consideration of internal oxidation, Sci. Rep. 6 (2016) 35268. https://doi.org/10.1038/srep35268
  33. X. Zhou, C. Liu, L. Yu, Y. Liu, H. Li, Phase transformation behavior and microstructural control of high-Cr martensitic/ferritic heat-resistant steels for power and nuclear plants: a review, J. Mater. Sci. Technol. 31 (2015) 235-242. https://doi.org/10.1016/j.jmst.2014.12.001
  34. Z.C. Cordero, B.E. Knight, C.A. Schuh, Six decades of the Hall-Petch effect - a survey of grain-size strengthening studies on pure metals, Int. Mater. Rev. 61 (2016) 495-512. https://doi.org/10.1080/09506608.2016.1191808
  35. Y. Li, Q. Huang, Y. Wu, T. Nagasaka, T. Muroga, Mechanical properties and microstructures of China low activation martensitic steel compared with JLF-1, J. Nucl. Mater. 367-370 (2007) 117-121. https://doi.org/10.1016/j.jnucmat.2007.03.012
  36. X. Wu, Y. Zhu, Heterogeneous materials: a new class of materials with unprecedented mechanical properties, Mater. Res. Lett. 5 (2017) 527-532. https://doi.org/10.1080/21663831.2017.1343208
  37. M.G. Jiang, Z.W. Chen, J.D. Tong, C.Y. Liu, G. Xu, H.B. Liao, P. Wang, X.Y. Wang, M. Xu, C.S. Lao, Strong and ductile reduced activation ferritic/martensitic steel additively manufactured by selective laser melting, Mater. Res. Lett. 7 (2019) 426-432. https://doi.org/10.1080/21663831.2019.1631224
  38. J. Xiao, X. Gong, C. Xiang, Z. Yu, H. Wang, K. Zhao, C. Liu, H. Zhuo, S. Qiu, Y. Yin, A refined oxidation mechanism proposed for ferritic-martensitic steels exposed to oxygen-saturated liquid lead-bismuth eutectic at 400℃ for 500 h, J. Nucl. Mater. 549 (2021) 152852. https://doi.org/10.1016/j.jnucmat.2021.152852
  39. L. Martinelli, F. Balbaud-Celerier, G. Picard, G. Santarini, Oxidation mechanism of a Fe-9Cr-1Mo steel by liquid Pb-Bi eutectic alloy (Part III), Corrosion Sci. 50 (2008) 2549-2559. https://doi.org/10.1016/j.corsci.2008.06.049
  40. A.L. Johnson, D. Parsons, J. Manzerova, D.L. Perry, D. Koury, B. Hosterman, J.W. Farley, Spectroscopic and microscopic investigation of the corrosion of 316/316L stainless steel by lead-bismuth eutectic (LBE) at elevated temperatures: importance of surface preparation, J. Nucl. Mater. 328 (2004) 88-96. https://doi.org/10.1016/j.jnucmat.2004.03.006
  41. Q. Shi, J. Liu, H. Luan, Z. Yang, W. Wang, W. Yan, Y. Shan, K. Yang, Oxidation behavior of ferritic/martensitic steels in stagnant liquid LBE saturated by oxygen at 600 ℃, J. Nucl. Mater. 457 (2015) 135-141. https://doi.org/10.1016/j.jnucmat.2014.11.018
  42. G. Muller, G. Schumacher, F. Zimmermann, Investigation on oxygen controlled liquid lead corrosion of surface treated steels, J. Nucl. Mater. 278 (2000) 85-95. https://doi.org/10.1016/S0022-3115(99)00211-1
  43. V. Tsisar, C. Schroer, O. Wedemeyer, A. Skrypnik, J. Konys, Characterization of corrosion phenomena and kinetics on T91 ferritic/martensitic steel exposed at 450 and 550 ℃ to flowing Pb-Bi eutectic with 10-7 mass% dissolved oxygen, J. Nucl. Mater. 494 (2017) 422-438. https://doi.org/10.1016/j.jnucmat.2017.07.031
  44. V. Tsisar, C. Schroer, O. Wedemeyer, A. Skrypnik, J. Konys, Corrosion interaction of 9%Cr ferritic/martensitic steels at 450 and 550℃ With flowing Pb-BiEutectic containing 10-7 mass % dissolved oxygen, J. Nucl. Eng. Radiat. Sci. 5 (2019).