DOI QR코드

DOI QR Code

Inclusion and mechanical properties of ODS-RAFM steels with Y, Ti, and Zr fabricated by melting

  • Qiu, Guo-xing (School of Metallurgical Engineering, Xi'an University of Architecture and Technology) ;
  • Wei, Xu-li (School of Metallurgical Engineering, Xi'an University of Architecture and Technology) ;
  • Bai, Chong (School of Metallurgical Engineering, Xi'an University of Architecture and Technology) ;
  • Miao, De-jun (School of Metallurgical Engineering, Xi'an University of Architecture and Technology) ;
  • Cao, Lei (Materials Engineering Department, Hebei College of Industry and Technology) ;
  • Li, Xiao-ming (School of Metallurgical Engineering, Xi'an University of Architecture and Technology)
  • 투고 : 2021.12.23
  • 심사 : 2022.01.24
  • 발행 : 2022.07.25

초록

Two groups of oxide dispersion-strengthened reduced-activation ferritic/martensitic steels (A and B) were prepared by adding Y, Ti, and Zr into steels through vacuum induction melting to investigate the inclusions, microstructures, mechanical properties of the alloys. Results showed that particles with Y, Ti, and Zr easily formed. Massive, Zr-rich inclusions were found in B steel. Density of micron inclusions in A steel was 1.42 × 1014 m-3, and density of nanoparticles was 3.61 × 1016 m-3. More and finer MX carbides were found in steel tempered at 650 ℃, and yield strengths (YS) of A and B steel were 714±2 and 664±3.5 MPa. Thermomechanical processing (TMP) retained many dislocations, which improved the mechanical properties. YSs of A and B treated by TMP were 725±3 and 683±4 MPa. The existence of massive Zr-rich inclusions in B steels interrupted the continuity of the matrix and produced microcracks (fracture), which caused a reduction in mechanical properties. The presence of fine prior austenite grain size and inclusions was attributed to the low DBTTs of the A steels; DBTTs of A650 and A700 alloy were -79 and -65 ℃. Tempering temperature reduction and TMP are simple, readily useable methods that can lead to a superior balance of strength and impact toughness in industry applications.

키워드

과제정보

The authors are grateful for the support from the Natural Science Foundation of Shaanxi Province (No. 2021JQ-502), Natural Science Foundation of He Bei Province (No. E2021417001). and Science Foundation of Xi'an University of Architecture and Technology (ZR20040).

참고문헌

  1. J.H. Zhou, Y.F. Shen, N. Jia, Strengthening mechanisms of reduced activation ferritic/martensitic steels: a review, Int. J. Min. Met. Mater. 28 (3) (2021) 335-348. https://doi.org/10.1007/s12613-020-2121-1
  2. Y.B. Chun, S.H. Kang, D.W. Lee, S. Cho, Y.H. Jeong, A. Zywczak, C.K. Rhee, Development of Zr-containing advanced reduced-activation alloy (ARAA) as structural material for fusion reactors, Fusion Eng. Des. 109-111 (2016) 629-633. https://doi.org/10.1016/j.fusengdes.2016.02.032
  3. H. Tanigawa, K. Shiba, A. Moslang, R.E. Stoller, R. Lindau, M.A. Sokolov, G.R. Odette, R.J. Kurtz, S. Jitsukawa, Status and key issues of reduced activation ferritic/martensitic steels as the structural material for a DEMO blanket, J. Nucl. Mater. 417 (2011) 9-15. https://doi.org/10.1016/j.jnucmat.2011.05.023
  4. G.X. Qiu, D.P. Zhan, C.S. Li, Y.K. Yang, M. Qi, Z.H. Jiang, H.S. Zhang, Influence of inclusions on the mechanical properties of RAFM steels via Y and Ti addition, Metals 9 (8) (2019) 851. https://doi.org/10.3390/met9080851
  5. S. Noh, B. Kim, R. Kasada, A. Kimura, Diffusion bonding between ODS ferritic steel and F82H steel for fusion applications, J. Nucl. Mater. 426 (2012) 208-213. https://doi.org/10.1016/j.jnucmat.2012.02.024
  6. S.B. Peng, Z. Lu, Y. Li, Effects of Y2O3/Ti/Zr addition on microstructure and hardness of ODS-CoCrFeNi HEAs produced by mechanical alloying and spark plasma sintering, J. Alloys Compd. 861 (2021) 157940. https://doi.org/10.1016/j.jallcom.2020.157940
  7. H. Kishimoto, R. Kasada, O. Hashitomi, A. Kimura, Stability of YeTi complex oxides in Fe-16Cr-0.1Ti ODS ferritic steel before and after heavy-ion irradiation, J. Nucl. Mater. 386-388 (2009) 533-536. https://doi.org/10.1016/j.jnucmat.2008.12.169
  8. L. Zhang, L. Yu, Y. Liu, C. Liu, H. Li, J. Wu, Influence of Zr addition on the microstructures and mechanical properties of 14Cr ODS steels, Mater. Sci. Eng., A 695 (2017) 66-73. https://doi.org/10.1016/j.msea.2017.04.020
  9. G. Filacchioni, E. Casagrande, U.D. Angelis, G.D. Santis, L. Pilloni, Tensile and impact behaviour of BATMAN II steels, Ti-bearing reduced activation martensitic alloys, J. Nucl. Mater. 271-272 (1999) 445-449. https://doi.org/10.1016/S0022-3115(98)00755-7
  10. R. Gurumoorthy, V. Balamurugan, K. Kumar, Investigation on phase formations in nano oxide particles dispersion strengthened iron base alloys for nuclear reactor applications, Mater. Today 45 (6) (2021) 4874-4879. https://doi.org/10.1016/j.matpr.2021.01.352
  11. H. Sakasegawa, S. Ohtsuka, S. Ukai, H. Tanigawa, M. Fujiwara, H. Ogiwara, A. Kohyama, Microstructural evolution during creep of 9Cr-ODS steels, Fusion Eng. Des. 81 (2006) 1013-1018. https://doi.org/10.1016/j.fusengdes.2005.09.045
  12. G.X. Qiu, D.P. Zhan, C.S. Li, M. Qi, Z.H. Jiang, H.S. Zhang, Development of a micro-scale Y-Zr-O oxide-dispersion-strengthened steel fabricated via vacuum induction melting and electro-slag remelting, Nucl. Eng. Technol. 51 (2019) 1589-1595. https://doi.org/10.1016/j.net.2019.05.001
  13. S. Hideo, T. Hiroyasu, K. Sho, A. Hiroaki, Material properties of the F82H melted in an electric arc furnace, Fusion Eng. Des. 98-99 (2015) 2068-2071. https://doi.org/10.1016/j.fusengdes.2015.06.103
  14. Z.M. Shi, F.S. Han, The microstructure and mechanical properties of microscale Y2O3 strengthened 9Cr steel fabricated by vacuum casting, Mater. Des. 66 (2015) 304-308. https://doi.org/10.1016/j.matdes.2014.10.075
  15. Z. Shi, F. Han, Microstructures and properties of cast T91-ODS alloys, Mater. Res. Innovat. 19 (5) (2015) 832-835.
  16. Z.Y. Hong, X.X. Zhang, Q.Z. Yan, Y.X. Chen, A new method for preparing 9Cr-ODS steel using elemental yttrium and Fe2O3 oxygen carrier, J. Alloys Compd. 770 (2019) 831-839. https://doi.org/10.1016/j.jallcom.2018.08.196
  17. Q. Yan, Z. Hong, Method for Preparing Oxide Dispersion Strengthening F/M Steel Using Smelting and Casting Process: United States, 20190144962A1[P], 2019, pp. 5-16.
  18. D.P. Zhan, G.X. Qiu, Z.H. Jiang, H.S. Zhang, Effect of yttrium and titanium on inclusions and the mechanical properties of 9Cr RAFM steel fabricated by vacuum melting, Steel Res. Int. 87 (2017) 1700159.
  19. P. Dou, S.M. Jiang, L.L. Qiu, A. Kimura, Effects of contents of Al, Zr and Ti on oxide particles in Fe-15Cr-2W-0.35Y2O3 ODS steels, J. Nucl. Mater. 531 (2020) 152025. https://doi.org/10.1016/j.jnucmat.2020.152025
  20. P. Dou, W. Sang, A. Kimura, Morphology, crystal and metal/oxide interface structures of nanoparticles in Fe-15Cr-2W-0.5Ti-7Al-0.4Zr-0.5Y2O3 ODS steel, J. Nucl. Mater. 523 (2019) 231-247. https://doi.org/10.1016/j.jnucmat.2019.05.055
  21. J. Isselin, R. Kasada, A. Kimura, T. Okuda, M. Inoue, S. Ukai, S. Ohnuki, T. Fujisawa, F. Abe, Effects of Zr addition on the microstructure of 14%Cr4%Al ODS ferritic steels, Mater. Trans. 51 (5) (2010) 1011-1015. https://doi.org/10.2320/matertrans.MBW200923
  22. W.J. Li, H.J. Xu, X.C. Sha, J.S. Meng, W.Z. Wang, C. Kang, X.M. Zhang, Z.D. Wang, Microstructural characterization and strengthening mechanisms of a 15CrODS steel produced by mechanical alloying and Spark Plasma Sintering, Fusion Eng. Des. 137 (2018) 71-78. https://doi.org/10.1016/j.fusengdes.2018.08.020
  23. W.X. Li, T. Hao, R. Gao, X.P. Wang, T. Zhang, Q.F. Fang, C.S. Liu, The effect of Zr, Ti addition on the particle size and microstructure evolution of yttria nanoparticle in ODS steel, Powder Technol. 319 (2017) 172-182. https://doi.org/10.1016/j.powtec.2017.06.041
  24. S.J. Wu, J. Li, W.H. Li, S. Liu, Characterization of oxide dispersoids and mechanical properties of 14Cr-ODS FeCrAl alloys, J. Alloys Compd. 814 (2020) 152282. https://doi.org/10.1016/j.jallcom.2019.152282
  25. H.J. Xu, Z. Lu, S. Ukai, N. Oono, C.M. Liu, Effects of annealing temperature on nanoscale particles in oxide dispersion strengthened Fe-15Cr alloy powders with Ti and Zr additions, J. Alloys Compd. 693 (2017) 177-187. https://doi.org/10.1016/j.jallcom.2016.09.133
  26. Z.B. Li, K. Xiong, C.C. Jin, Y.J. Sun, B.W. Wang, S.M. Zhang, J.J. He, Y. Mao, Structural, mechanical, thermodynamic and electronic properties of Pt3M (M = Al, Co, Hf, Sc, Y, Zr) compounds under high pressure, Rare Met. 40 (5) (2021) 1208-1218. https://doi.org/10.1007/s12598-020-01656-2
  27. L. Yang, Y. Zheng, C.L. Wan, Q.M. Gong, C. Zhang, H. Chen, Z.G. Yang, Characteristics of oxide pegs in Ti- and Y-doped CoNiCrAl alloys at 1150 ℃, Rare Met. 40 (8) (2021) 2059-2064. https://doi.org/10.1007/s12598-020-01577-0
  28. D.P. Zhan, G.X. Qiu, C.S. Li, Y.K. Yang, Z.H. Jiang, H.S. Zhang, Evolution of microstructures and mechanical properties of Zr-containing Y-CLAM during thermal aging, Acta Metall. Sin-Engl. 33 (6) (2020) 881-891. https://doi.org/10.1007/s40195-020-01011-5
  29. Y.K. Yang, D.P. Zhan, H. Lei, Y.L. Li, G.X. Qiu, R.J. Wang, Z.H. Jiang, H.S. Zhang, Coupling effect of prior austenite grain size and inclusion characteristics on acicular ferrite formation in Ti-Zr deoxidized low carbon steel, Metall. Mater. Trans. B 51B (2020) 480-491.
  30. T.N. Baker, Role of zirconium in microalloyed steels: a review, Mater. Sci. Technol. 31 (3) (2015) 265-294. https://doi.org/10.1179/1743284714Y.0000000549
  31. C.H. Lee, J.Y. Park, W.K. Seol, J. Moon, T.H. Lee, N.H. Kang, H.C. Kim, Microstructure and tensile and Charpy impact properties of reduced activation Ferritic-martensitic steel with Ti, Fusion Eng. Des. 124 (2017) 953-957. https://doi.org/10.1016/j.fusengdes.2017.05.085
  32. J.Y. Choi, J. Moon, B.H. Kim, N.H. Kang, Tensile and Charpy impact properties of reduced activation ferritic/martensitic steel with small amounts of Ta and Ti, J. Nucl. Mater. 528 (2019) 151862.
  33. Y.B. Chun, C.K. Rhee, D.W. Lee, Y.H. Park, Enhanced high-temperature mechanical properties of ARAA by thermomechanical processing, Fusion Eng. Des. 136 (2018) 883-890. https://doi.org/10.1016/j.fusengdes.2018.04.029
  34. G.X. Qiu, D.P. Zhan, L. Cao, H.S. Zhang, Effect of zirconium on inclusions and mechanical properties of China low activation martensitic steel, J. Iron Steel Res. Int. 28 (9) (2021) 1168-1179. https://doi.org/10.1007/s42243-021-00572-8
  35. Qiu G. X., Du Qing, Li X. M., Xing X. D., Zhan D. P. Strengthening effect of multiscale second phases in reduced activation ferrite/martensitic steel. Steel Res. Int. (DOI:10.1002/srin.202100430).
  36. Y.J. Liang, Y.C. Che, Handbook of Inorganic Thermodynamic Data, Shenyang, Northeastern University Press, 1993.
  37. C.H. Wu, L.F. Sun, C.B. Lai, Z.H. Deng, Q.X. Fu, C.Q. Yuan, Effect of rare earth treatment on inclusion of E36 slab for shipbuilding, Iron Steel Van. Tit. 37 (5) (2016) 139-146.
  38. Q.X. Sun, Y. Zhou, Q.F. Fang, R. Gao, T. Zhang, X.P. Wang, Development of 9CrODS ferritic-martensitic steel prepared by chemical reduction and mechanical milling, J. Alloys Compd. 598 (2014) 243-247. https://doi.org/10.1016/j.jallcom.2014.02.030
  39. B.H. Kim, J.H. Jang, W.K. Seol, J. Moon, S.D. Kim, T.H. Lee, H.C. Kim, C.H. Lee, K.M. Cho, Effect of Ti addition on hardness change during tempering in reduced activation ferritic/martensitic (RAFM) steels, J. Nucl. Mater. 508 (2018) 595-598. https://doi.org/10.1016/j.jnucmat.2018.05.075
  40. Z. Cong, Y. Murata, Dislocation density of lath martensite in 10Cr-5W heat-resistant steels, Mater. Trans. 52 (12) (2011) 2151-2154. https://doi.org/10.2320/matertrans.M2011201
  41. Z.Y. Zhong, H. Saka, T.H. Kim, Y. Long, Y. Xu, Q.Y. Huang, The structure and properties of low activation ferritic/martensitic steels, Mater. Sci. Forum 475-479 (2005) 1383-1386. https://doi.org/10.4028/www.scientific.net/MSF.475-479.1383
  42. Q.M. Wan, R.S. Wang, G.G. Shu, H. Ding, P. Huang, F. Lv, L.K. Weng, Analysis method of Charpy V-notch impact data before and after electron beam welding reconstitution, Nucl. Eng. Des. 241 (2) (2011) 459-463. https://doi.org/10.1016/j.nucengdes.2010.11.005