DOI QR코드

DOI QR Code

Effect of irradiation temperature on the nanoindentation behavior of P92 steel with thermomechanical treatment

  • Huang, Xi (School of Nuclear Science and Engineering, East China University of Technology) ;
  • Shen, Yinzhong (School of Mechanical Engineering, Shanghai Jiao Tong University) ;
  • Li, Qingshan (School of Mechanical Engineering, Shanghai Jiao Tong University) ;
  • Li, Xiaoyan (School of Nuclear Science and Engineering, East China University of Technology) ;
  • Zhan, Zixiong (School of Nuclear Science and Engineering, East China University of Technology) ;
  • Li, Guang (School of Nuclear Science and Engineering, East China University of Technology) ;
  • Li, Zhenhe (School of Nuclear Science and Engineering, East China University of Technology)
  • 투고 : 2021.06.26
  • 심사 : 2022.02.06
  • 발행 : 2022.07.25

초록

The nanoindentation behavior of P92 steel with thermomechanical treatment under 3.5 MeV Fe13+ ion irradiation at room temperature, 400 and 700 ℃ was investigated. Pop-in behavior is observed for all the samples with and without irradiation at room temperature, while the temperature dependence of pop-in behavior is only observed in irradiated samples. The average load and penetration depth at the onset of pop-in increase as the irradiation temperature increases, in line with the results of the maximum shear stress. Irradiation induced hardening is exhibited for all irradiated samples, but there is a significant reduction in the hardness of sample irradiated at 700 ℃ in comparison to the samples irradiated at room temperature and 400 ℃. The ratio of hardness to elastic modulus for all samples decreases with increasing penetration depth except for samples at 700 ℃. With the increasing of irradiation temperature, the ratio of the irreversible work to the total work gradually decreases. In contrast, it increases for samples without irradiation.

키워드

과제정보

This study was supported by the National Natural Science Foundation of China (51034011), National Science and Technology Major Project of China (2011ZX06004-009), International Thermonuclear Experimental Reactor (ITER) Project-National Magnetic Confinement Fusion Program (2011GB113001), Jiangxi Provincial Natural Science (20202BABL211014), the Key Laboratory of Nuclear Resources and Environment (NRE1608), Foundation of Jiangxi Educational Committee (GJJ180401) and Doctoral Scientific Research Foundation of East China University of Technology (DHBK2017127).

참고문헌

  1. C. Cabet, F. Dalle, E. Gaganidze, J. Henry, H. Tanigawa, Ferritic-martensitic steels for fission and fusion applications, J. Nucl. Mater. 523 (2019) 510-537, https://doi.org/10.1016/j.jnucmat.2019.05.058.
  2. L. Chen, Z. Zeng, Y. Zhao, F. Zhu, X. Liu, Microstructures and high-temperature mechanical properties of a martensitic heat-resistant stainless steel 403Nb processed by thermo-mechanical treatment, Metall. Mater. Trans. 45 (2014) 1498-1507, https://doi.org/10.1007/s11661-013-2105-0.
  3. S. Li, Z. Eliniyaz, F. Sun, Y. Shen, L. Zhang, A. Shan, Effect of thermo-mechanical treatment on microstructure and mechanical properties of P92 heat resistant steel, Mater. Sci. Eng. 559 (2013) 882-888, https://doi.org/10.1016/j.msea.2012.09.040.
  4. M. Song, C. Sun, Z. Fan, Y. Chen, R. Zhu, K.Y. Yu, K.T. Hartwig, H. Wang, X. Zhang, A roadmap for tailoring the strength and ductility of ferritic/martensitic T91 steel via thermo-mechanical treatment, Acta Mater. 112 (2016) 361-377, https://doi.org/10.1016/j.actamat.2016.04.031.
  5. S. Hollner, B. Fournier, J. Le Pendu, T. Cozzika, I. Tournie, J.-C. Brachet, A. Pineau, High-temperature mechanical properties improvement on modified 9Cr-1Mo martensitic steel through thermomechanical treatments, J. Nucl. Mater. 405 (2010) 101-108, https://doi.org/10.1016/j.jnucmat.2010.07.034.
  6. I.Yu Litovchenko, N.A. Polekhina, A.N. Tyumentsev, E.G. Astafurova, V.M. Chernov, M.V. Leontyeva-Smirnova, The effect of heat treatment on the microstructure and mechanical properties of heat-resistant ferritic-martensitic steel EK-181, J. Nucl. Mater. 455 (2014) 665-668, https://doi.org/10.1016/j.jnucmat.2014.08.056.
  7. N.A. Polekhina, I.Y. Litovchenko, A.N. Tyumentsev, D.A. Kravchenko, V.M. Chernov, M.V. Leont'eva-Smirnova, Effect of high-temperature thermomechanical treatment in the austenite region on microstructure and mechanical properties of low-activated 12% chromium ferritic-martensitic steel EK-181, Tech. Phys. 62 (2017) 736-740, https://doi.org/10.1134/S106378421705022X.
  8. A. Di Schino, C. Testani, L. Pilloni, Effect of thermo-mechanical parameters on the mechanical properties of Eurofer97 steel for nuclear applications, Open Eng. 8 (2018) 349-353, https://doi.org/10.1515/eng-2018-0040.
  9. L. Tan, Y. Yang, J.T. Busby, Effects of alloying elements and thermomechanical treatment on 9Cr Reduced Activation Ferritic-Martensitic (RAFM) steels, J. Nucl. Mater. 442 (2013) S13-S17, https://doi.org/10.1016/j.jnucmat.2012.10.015.
  10. E. Little, Influence of thermomechanical treatment on irradiation microstructures in an ODS ferritic steel, in: Effects of Radiation on Materials: 17th International Symposium, ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, 1996, https://doi.org/10.1520/STP16505S, 739-739-14.
  11. G.S. Was, Z. Jiao, E. Getto, K. Sun, A.M. Monterrosa, S.A. Maloy, O. Anderoglu, B.H. Sencer, M. Hackett, Emulation of reactor irradiation damage using ion beams, Scripta Mater. 88 (2014) 33-36, https://doi.org/10.1016/j.scriptamat.2014.06.003.
  12. D.L. Krumwiede, T. Yamamoto, T.A. Saleh, S.A. Maloy, G.R. Odette, P. Hosemann, Direct comparison of nanoindentation and tensile test results on reactor-irradiated materials, J. Nucl. Mater. 504 (2018) 135-143, https://doi.org/10.1016/j.jnucmat.2018.03.021.
  13. C. Heintze, C. Recknagel, F. Bergner, M. Hernandez-Mayoral, A. Kolitsch, Ion-irradiation-induced damage of steels characterized by means of nanoindentation, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 267 (2009) 1505-1508, https://doi.org/10.1016/j.nimb.2009.01.122.
  14. B. Li, Z. Wang, K. Wei, T. Shen, C. Yao, H. Zhang, Y. Sheng, X. Lu, A. Xiong, W. Han, Evaluation of helium effect on irradiation hardening in F82H, ODS, SIMP and T91 steels by nano-indentation method, Fusion Eng. Des. 142 (2019) 6-12, https://doi.org/10.1016/j.fusengdes.2019.04.049.
  15. A.A. Nikitin, S.V. Rogozhkin, T.V. Kulevoi, P.A. Fedin, N.A. Iskandarov, K.S. Kravchuk, E.V. Gladkikh, M.V. Leont'eva-Smirnova, E.M. Mozhanov, Nanoindentation study of the effect of low-temperature ion irradiation on the hardness of a ferritic-martensitic EK-181 steel, 2019, Russ. Metall. (2019) 1184-1189, https://doi.org/10.1134/S0036029519110077.
  16. L. Tan, W. Zhong, T. Chen, Microstructural stability of tantalum-alloyed ferritic-martensitic steel with neutron irradiation to 7.4 dpa at -490 ℃, Materialia 9 (2020) 100608, https://doi.org/10.1016/j.mtla.2020.100608.
  17. Q. Li, Y. Shen, X. Huang, Z. Xu, J. Zhu, Irradiation-induced hardening and softening of CLAM steel under Fe ion irradiation, Met. Mater. Int. 23 (2017) 1106-1111, https://doi.org/10.1007/s12540-017-7156-0.
  18. H. Yan, X. Liu, L. He, J. Stubbins, Early-stage microstructural evolution and phase stability in neutron-irradiated ferritic-martensitic steel T91, J. Nucl. Mater. 557 (2021) 153207, https://doi.org/10.1016/j.jnucmat.2021.153207.
  19. H. Ogiwara, A. Kohyama, H. Tanigawa, H. Sakasegawa, Irradiation-induced hardening mechanism of ion irradiated JLF-1 to high fluences, Fusion Eng. Des. 81 (2006) 1091-1097, https://doi.org/10.1016/j.fusengdes.2005.09.063.
  20. M. Rieth, E. Simondon, G. Pintsuk, G. Aiello, J. Henry, D. Terentyev, A. Puype, C. Cristalli, L. Pilloni, O. Tassa, M. Klimenkov, H.-C. Schneider, P. Fernandez, T. Graning, X. Chen, A. Bhattacharya, J. Reed, J.W. Geringer, M. Sokolov, Y. Katoh, L. Snead, Technological aspects in blanket design: effects of micro-alloying and thermo-mechanical treatments of EUROFER97 type steels after neutron irradiation, Fusion Eng. Des. 168 (2021) 112645, https://doi.org/10.1016/j.fusengdes.2021.112645.
  21. A. Backlin, Treatise on Heavy-Ion Science, 1986, https://doi.org/10.1016/0168-9002(86)90952-6.
  22. W.C. Oliver, G.M. Pharr, An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments, J. Mater. Res. 7 (1992) 1564-1583, https://doi.org/10.1557/JMR.1992.1564.
  23. F. Pohl, Pop-in behavior and elastic-to-plastic transition of polycrystalline pure iron during sharp nanoindentation, Sci. Rep. 9 (2019) 1-12, https://doi.org/10.1038/s41598-019-51644-5.
  24. T.G.N.C. Zhu, Z.P. Lu, Incipient plasticity and dislocation nucleation of FeCoCrNiMn high-entropy alloy, Acta Mater. 61 (2013) 2993-3001, https://doi.org/10.1016/j.actamat.2013.01.059.
  25. T. Ohmura, K. Tsuzaki, F. Yin, Nanoindentation-induced deformation behavior in the vicinity of single grain boundary of interstitial-free steel, Mater. Trans. 46 (2005) 2026-2029, https://doi.org/10.2320/matertrans.46.2026.
  26. K.L. Johnson, Contact Mechanics, 1987, https://doi.org/10.1201/b17110-2.
  27. W. Jiang, W. Zhang, G. Zhang, Y. Luo, Y.C. Zhang, W. Woo, S.T. Tu, Creep damage and crack initiation in P92-BNi2 brazed joint, Mater. Des. 72 (2015) 63-71, https://doi.org/10.1016/j.matdes.2015.01.011.
  28. G.M.P.W.C. Oliver, Measurement of hardness and elastic modulus by instrumented indentation: advances in understanding and refinements to methodology, J. Mater. Res. 19 (2004) 3-20, https://doi.org/10.1557/jmr.2004.19.1.3.
  29. A. Montagne, V. Audurier, C. Tromas, Influence of pre-existing dislocations on the pop-in phenomenon during nanoindentation in MgO, Acta Mater. 61 (2013) 4778-4786, https://doi.org/10.1016/j.actamat.2013.05.004.
  30. L. Tan, B.K. Kim, Y. Yang, K.G. Field, S. Gray, M. Li, Microstructural evolution of neutron-irradiated T91 and NF616 to ~4.3 dpa at 469℃, J. Nucl. Mater. 493 (2017) 12-20, https://doi.org/10.1016/j.jnucmat.2017.05.041.
  31. P.P. Liu, F.R. Wan, Q. Zhan, A model to evaluate the nano-indentation hardness of ion-irradiated materials, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 342 (2015) 13-18, https://doi.org/10.1016/j.nimb.2014.09.012.
  32. I. Manika, J. Maniks, Effect of substrate hardness and film structure on indentation depth criteria for film hardness testing, J. Phys. Appl. Phys. 41 (2008), 074010, https://doi.org/10.1088/0022-3727/41/7/074010.
  33. X. Zhao, P. Xiao, Determination of mechanical properties of thermally grown oxide on Fecralloy by nano-indentation, Thin Solid Films 515 (2007) 8393-8401, https://doi.org/10.1016/j.tsf.2007.05.014.
  34. M. Lei, B. Xu, Y. Pei, H. Lu, Y.Q. Fu, Micro-mechanics of nanostructured carbon/ shape memory polymer hybrid thin film, Soft Matter 12 (2016) 106-114, https://doi.org/10.1039/C5SM01269D.
  35. Y.T. Cheng, C.M. Cheng, Relationships between hardness, elastic modulus, and the work of indentation, Appl. Phys. Lett. 73 (1998) 614-616, https://doi.org/10.1063/1.121873.
  36. Z. Xu, Y. Shen, Z. Shang, C. Zhang, X. Huang, Precipitate phases in ferritic/martensitic steel P92 after thermomechanical treatment, J. Nucl. Mater. 509 (2018) 355-365, https://doi.org/10.1016/j.jnucmat.2018.04.025.
  37. R. Schaublin, M. Victoria, Differences in the microstructure of the F82H ferritic/martensitic steel after proton and neutron irradiation, J. Nucl. Mater. 283-287 (2000) 339-343, https://doi.org/10.1016/S0022-3115(00)00223-3.
  38. D.F. Bahr, D.E. Kramer, W.W. Gerberich, Non-linear deformation mechanisms during nanoindentation, Acta Mater. 46 (1998) 3605-3617, https://doi.org/10.1016/S1359-6454(98)00024-X.
  39. Z. Wang, H. Bei, E.P. George, G.M. Pharr, Influences of surface preparation on nanoindentation pop-in in single-crystal Mo, Scripta Mater. 65 (2011) 469-472, https://doi.org/10.1016/j.scriptamat.2011.05.030.
  40. J. Lian, J.E. Garay, J. Wang, Grain size and grain boundary effects on the mechanical behavior of fully stabilized zirconia investigated by nanoindentation, Scripta Mater. 56 (2007) 1095-1098, https://doi.org/10.1016/j.scriptamat.2007.02.027.
  41. A. Gouldstone, K.J. Van Vliet, S. Suresh, Nanoindentation: simulation of defect nucleation in a crystal, Nature 11 (2001) 656, https://doi.org/10.1038/35079687.
  42. J.E. Bradby, J.S. Williams, M.V. Swain, Pop-in events induced by spherical indentation in compound semiconductors, J. Mater. Res. 19 (2004) 380-386, https://doi.org/10.1557/jmr.2004.19.1.380.
  43. Y. Gao, H. Bei, Strength statistics of single crystals and metallic glasses under small stressed volumes, Prog. Mater. Sci. 82 (2016) 118-150, https://doi.org/10.1016/j.pmatsci.2016.05.002.
  44. H. Iwakiri, H. Wakimoto, H. Watanabe, N. Yoshida, Hardening behavior of molybdenum by low energy He and D ion irradiation, J. Nucl. Mater. 258-263 (1998) 873-878, https://doi.org/10.1016/S0022-3115(98)00260-8.
  45. K. Jin, Y. Xia, M. Crespillo, H. Xue, Y. Zhang, Y.F. Gao, H. Bei, Quantifying early stage irradiation damage from nanoindentation pop-in tests, Scripta Mater. 157 (2018) 49-53, https://doi.org/10.1016/j.scriptamat.2018.07.035.
  46. E. Kuramoto, N. Tsukuda, Y. Aono, M. Takenaka, Y. Takano, H. Yoshida, K. Shiraishi, Positron annihilation lifetime measurement of irradiated stainless steels, J. Nucl. Mater. 133-134 (1985) 561-565, https://doi.org/10.1016/0022-3115(85)90210-7.
  47. M. Goken, M. Kempf, Pop-ins in nanoindentations - the initial yield point, Zeitschrift Fuer Metallkunde/Materials Research and Advanced Techniques 92 (2001) 1061.
  48. T.F. Page, W.C. Oliver, C.J. McHargue, The deformation behavior of ceramic crystals subjected to very low load (nano)indentations, J. Mater. Res. 7 (1992) 450-473, https://doi.org/10.1557/JMR.1992.0450.
  49. T. Yang, S. Xia, W. Guo, R. Hu, J.D. Poplawsky, G. Sha, Y. Fang, Z. Yan, C. Wang, C. Li, Y. Zhang, S.J. Zinkle, Y. Wang, Effects of temperature on the irradiation responses of Al0.1CoCrFeNi high entropy alloy, Scripta Mater. 144 (2018) 31-35, https://doi.org/10.1016/j.scriptamat.2017.09.025.
  50. M.A. Lodes, A. Hartmaier, M. Goken, K. Durst, Influence of dislocation density on the pop-in behavior and indentation size effect in CaF2 single crystals: experiments and molecular dynamics simulations, Acta Mater. 59 (2011) 4264-4273, https://doi.org/10.1016/j.actamat.2011.03.050.
  51. T.H. Ahn, C.S. Oh, K. Lee, E.P. George, H.N. Han, Relationship between yield point phenomena and the nanoindentation pop-in behavior of steel, J. Mater. Res. 7 (2012) 39-44, https://doi.org/10.1557/jmr.2011.208.
  52. X. Xiao, L. Yu, Comparison of linear and square superposition hardening models for the surface nanoindentation of ion-irradiated materials, J. Nucl. Mater. 503 (2018) 110-115, https://doi.org/10.1016/j.jnucmat.2018.02.047.
  53. C. Sun, M. Kirk, M. Li, K. Hattar, Y. Wang, O. Anderoglu, J. Valdez, B.P. Uberuaga, R. Dickerson, S.A. Maloy, Microstructure, chemistry and mechanical properties of Ni-based superalloy Rene N4 under irradiation at room temperature, Acta Mater. 95 (2015) 357-365, https://doi.org/10.1016/j.actamat.2015.04.061.
  54. J.J. Shi, W.Z. Zhao, Y.C. Wu, X.B. Liu, J. Jiang, Characterization of protonirradiated Chinese A508-3-type reactor pressure vessel steel by slow positron beam, TEM, and nanoindentation, Nucl. Instrum. Methods Phys. Res. Sect. B Beam Interact. Mater. Atoms 443 (2019) 62-69, https://doi.org/10.1016/j.nimb.2019.01.044.
  55. G. Gupta, Z. Jiao, A.N. Ham, J.T. Busby, G.S. Was, Microstructural evolution of proton irradiated T91, J. Nucl. Mater. 351 (2006) 162-173, https://doi.org/10.1016/j.jnucmat.2006.02.028.
  56. H. Tanigawa, H. Sakasegawa, R.L. Klueh, Irradiation effects on precipitation in reduced-activation ferritic/martensitic steels, Mater. Trans. 46 (2005) 469-474, https://doi.org/10.2320/matertrans.46.469.
  57. Z. Yang, S. Jin, L. Song, W. Zhang, L. You, L. Guo, Dissolution of M23C6 and new phase re-precipitation in Fe ion-irradiated RAFM steel, Metals 8 (2018) 349, https://doi.org/10.3390/met8050349.
  58. S. Kano, H. Yang, J. Shen, Z. Zhao, J. McGrady, D. Hamaguchi, M. Ando, H. Tanigawa, H. Abe, Instability of MX and M23C6 type precipitates in F82H steels under 2.8 MeV Fe2+ irradiation at 673 K, Nucl. Mater. Energy 17 (2018) 56-61, https://doi.org/10.1016/j.nme.2018.08.001.
  59. C. Heintze, F. Bergner, M. Hernandez-Mayoral, Ion-irradiation-induced damage in Fe-Cr alloys characterized by nanoindentation, J. Nucl. Mater. 417 (2011) 980-983, https://doi.org/10.1016/j.jnucmat.2010.12.196.
  60. J. Zhu, Y.Z. Shen, The effect of Fe-ion irradiation on hardness changes in P92 ferritic/martensitic steel, Appl. Mech. Mater. 446-447 (2013) 418-421. https://doi.org/10.4028/www.scientific.net/AMM.446-447.418.
  61. D.R.H.R.L. Klueh, High-Chromium Ferritic and Martensitic Steels for Nuclear Applications, 2001, https://doi.org/10.1520/MONO3-EB. ASTM International, 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959.
  62. G.S. Was, Fundamentals of Radiation Materials Science, Springer Berlin Heidelberg, Berlin, Heidelberg, 2007, https://doi.org/10.1007/978-3-540-49472-0.
  63. Y.-T. Cheng, C.-M. Cheng, Relationships between hardness, elastic modulus, and the work of indentation, Appl. Phys. Lett. 73 (1998) 614-616, https://doi.org/10.1063/1.121873.