DOI QR코드

DOI QR Code

Coupled irradiation-thermal-mechanical analysis of the solid-state core in a heat pipe cooled reactor

  • Ma, Yugao (Department of Engineering Physics, Tsinghua University) ;
  • Liu, Jiusong (Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China) ;
  • Yu, Hongxing (Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China) ;
  • Tian, Changqing (Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China) ;
  • Huang, Shanfang (Department of Engineering Physics, Tsinghua University) ;
  • Deng, Jian (Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China) ;
  • Chai, Xiaoming (Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China) ;
  • Liu, Yu (Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China) ;
  • He, Xiaoqiang (Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China)
  • Received : 2021.05.27
  • Accepted : 2022.01.02
  • Published : 2022.06.25

Abstract

The solid-state core of a heat pipe cooled reactor operates at high temperatures over 1000 K with thermal and irradiation-induced expansion during burnup. The expansion changes the gap thickness between the solid components and the material properties, and may even cause the gap closure, which then significantly influences the thermal and mechanical characteristics of the reactor core. This study developed an irradiation behavior model for HPRTRAN, a heat pipe reactor system analysis code, to introduce the irradiation effects such as swelling and creep. The megawatt heat pipe reactor MegaPower was chosen as an application case. The coupled irradiation-thermal-mechanical model was developed to simulate the irradiation effects on the heat transfer and stresses of the whole reactor core. The results show that the irradiation deformation effect is significant, with the irradiation-induced strains up to 2.82% for fuel and 0.30% for monolith at the end of the reactor lifetime. The peak temperatures during the lifetime are 1027:3 K for the fuel and 956:2 K for monolith. The gap closure enhances the heat transfer but caused high stresses exceeding the yield strength in the monolith.

Keywords

Acknowledgement

This project was supported by the National Natural Science Foundation of China, No. 11975219, and the Scientific Research Program for Young Talent Elite Project of the China National Nuclear Corporation (CNNC2019YTEP-NPIC01). The authors are also thankful for the support of the Science and Technology on Reactor System Design Technology Laboratory, Nuclear Power Institute of China.

References

  1. H. Yu, Y. Ma, Z. Zhang, X. Chai, Initiation and development of heat pipe cooled reactor, Nucl. Power Eng. 40 (2019) 1-8.
  2. B.H. Yan, C. Wang, L.G. Li, The technology of micro heat pipe cooled reactor: a review, Ann. Nucl. Energy 135 (2020) 106948. https://doi.org/10.1016/j.anucene.2019.106948
  3. J.W. Sterbentz, J.E. Werner, M.G. McKellar, A.J. Hummel, J.C. Kennedy, R.N. Wright, J.M. Biersdorf, Special purpose nuclear reactor (5 MW) for reliable power at remote sites assessment report, in: Idaho National Lab (INL), 2017. Idaho Falls, ID (United States).
  4. Y. Ma, M. Liu, B. Xie, W. Han, H. Yu, S. Huang, X. Chai, Y. Liu, Z. Zhang, Neutronic and thermal-mechanical coupling analyses in a solid-state reactor using Monte Carlo and finite element methods, Ann. Nucl. Energy 151 (2021) 107923. https://doi.org/10.1016/j.anucene.2020.107923
  5. H. Cao, G. Wang, The research on the heat transfer of a solid-core nuclear reactor cooled by heat pipe through a numerical simulation, considering the assembly gaps, Ann. Nucl. Energy 130 (2019) 431-439. https://doi.org/10.1016/j.anucene.2019.03.013
  6. Y. Ma, E. Chen, H. Yu, R. Zhong, J. Deng, X. Chai, S. Huang, S. Ding, Z. Zhang, Heat pipe failure accident analysis in megawatt heat pipe cooled reactor, Ann. Nucl. Energy 149 (2020) 107755. https://doi.org/10.1016/j.anucene.2020.107755
  7. P. Hu, L. Chen, L. Wang, L. Zhang, Steady-state thermal analysis of a fuel module in the heat pipe-cooled reactor (in Chinese), Modern Appl. Phys. 4 (2013) 375-378.
  8. Y.S. Kim, G. Hofman, Fission product induced swelling of U-Mo alloy fuel, J. Nucl. Mater. 419 (2011) 291-301. https://doi.org/10.1016/j.jnucmat.2011.08.018
  9. M. Meyer, J. Gan, J. Jue, D. Keiser, E. Perez, A. Robinson, D. Wachs, N. Woolstenhulme, G. Hofman, Y. Kim, Irradiation performance of U-Mo monolithic fuel, Nucl. Eng. Technol. 46 (2014) 169-182. https://doi.org/10.5516/NET.07.2014.706
  10. K. Une, M. Imamura, M. Amaya, Y. Korei, Fuel oxidation and irradiation behaviors of defective BWR fuel rods, J. Nucl. Mater. 223 (1995) 40-50. https://doi.org/10.1016/0022-3115(94)00693-8
  11. C. Tang, Y. Jiao, Y. Li, Y. Zhou, H. Pang, Preliminary research on the irradiation-thermal-mechanical coupling behavior simulation method of FCM fuel, Int. J. Adv. Nuclear Reactor Design Technol. 1 (2019) 51-56. https://doi.org/10.1016/j.jandt.2019.10.002
  12. Y. Zhao, X. Gong, S. Ding, Simulation of the irradiation-induced thermo-mechanical behaviors evolution in monolithic U-Mo/Zr fuel plates under a heterogeneous irradiation condition, Nucl. Eng. Des. 285 (2015) 84-97. https://doi.org/10.1016/j.nucengdes.2014.12.030
  13. P.R. Mcclure, D.I. Poston, V.R. Dasari, R.S. Reid, Design of megawatt power level heat pipe reactors, in: Los Alamos National Lab (LANL), 2015. Los Alamos, NM (United States).
  14. D.I. Poston, The Heatpipe-Operated Mars Exploration Reactor (HOMER), AIP, American Institute of Physics, United States, 2001.
  15. Y. Ma, C. Tian, H. Yu, R. Zhong, Z. Zhang, S. Huang, J. Deng, X. Chai, Y. Yang, Transient heat pipe failure accident analysis of a megawatt heat pipe cooled reactor, Prog. Nucl. Energy 140 (2021) 103904. https://doi.org/10.1016/j.pnucene.2021.103904
  16. Z.J. Zuo, A. Faghri, A network thermodynamic analysis of the heat pipe, Int. J. Heat Mass Tran. 41 (1998) 1473-1484. https://doi.org/10.1016/S0017-9310(97)00220-2
  17. Y. Ma, R. Zhong, Z. Zhang, X. Chai, S. Huang, H. Yu, A transient and steady-state network model forannular-wick heat pipes in continuum flow pattern, in: 27th International Conference on Nuclear Engineering, ICONE 2019, May 19-24, 2019, Tsukuba, Ibaraki, Japan, 2019.
  18. K. Wang, Z. Li, D. She, J.G. Liang, Q. Xu, Y. Qiu, J. Yu, J. Sun, X. Fan, G. Yu, RMC - a Monte Carlo code for reactor core analysis, Ann. Nucl. Energy 82 (2015) 121-129. https://doi.org/10.1016/j.anucene.2014.08.048
  19. A. Ross, R. Stoute, Heat Transfer Coefficient between UO 2 and Zircaloy-2, Atomic Energy of Canada Limited, Chalk River, Ontario, 1962.
  20. K. Geelhood, W. Luscher, P. Raynaud, I. Porter, A computer code for the calculation of steady-state, thermal-mechanical behavior of oxide fuel rods for high burnup, in: Pacific Northwest, National Laboratory, Richland, Washington, 2015.
  21. H. Yu, W. Tian, Z. Yang, G.H. Su, S. Qiu, Development of fuel rod behavior analysis code (FROBA) and its application to AP1000, Ann. Nucl. Energy 50 (2012) 8-17. https://doi.org/10.1016/j.anucene.2012.06.010
  22. Y. Rashid, R. Dunham, R. Montgomery, Fuel Analysis and Licensing Code: FALCON MOD01, EPRI Report, 2004.
  23. D.L. Hagrman, G.A. Reymann, MATPRO-Version 11: a handbook of materials properties for use in the analysis of light water reactor fuel rod behavior, in: Idaho National Engineering Lab, 1979. Idaho Falls (USA).
  24. B. Mihaila, M. Stan, J. Ramirez, A. Zubelewicz, P. Cristea, Simulations of coupled heat transport, oxygen diffusion, and thermal expansion in UO2 nuclear fuel elements, J. Nucl. Mater. 394 (2009) 182-189. https://doi.org/10.1016/j.jnucmat.2009.09.007
  25. P. Lucuta, I. Hastings, A pragmatic approach to modelling thermal conductivity of irradiated UO2 fuel: review and recommendations, J. Nucl. Mater. 232 (1996) 166-180. https://doi.org/10.1016/S0022-3115(96)00404-7
  26. K.C. Mills, Y. Su, Z. Li, R.F. Brooks, Equations for the calculation of the thermophysical properties of stainless steel, ISIJ Int. 44 (2004) 1661-1668. https://doi.org/10.2355/isijinternational.44.1661
  27. W.G. Luscher, K.J. Geelhood, Material property correlations: comparisons between FRAPCON-3.4, FRAPTRAN 1.4, and MATPRO, in: Pacific Northwest National Lab.(PNNL), 2010. Richland, WA (United States).
  28. P. McClure, D. Poston, D. Rao, R. Reid, Design of megawatt power level heat pipe reactors, in: Los Alamos National Lab.(LANL), 2015. Los Alamos, NM (United States).
  29. M.R. Eslami, R.B. Hetnarski, J. Ignaczak, N. Noda, N. Sumi, Y. Tanigawa, Theory of Elasticity and Thermal Stresses, Springer, 2013.
  30. A. Booth, A method of calculating fission gas diffusion from UO 2 fuel and its application to the X-2-f loop test, in: Atomic Energy of Canada Limited, 1957. Chalk River, Ontario.
  31. L. Bernard, J. Jacoud, P. Vesco, An efficient model for the analysis of fission gas release, J. Nucl. Mater. 302 (2002) 125-134. https://doi.org/10.1016/S0022-3115(02)00793-6
  32. P. Van Uffelen, M. Suzuki, Oxide fuel performance modeling and simulations, in: R.J.M. Konings (Ed.), Comprehensive Nuclear Materials, Elsevier, Oxford, 2012, pp. 535-577.
  33. J. Rest, M. Cooper, J. Spino, J. Turnbull, P. Van Uffelen, C. Walker, Fission gas release from UO2 nuclear fuel: a review, J. Nucl. Mater. 513 (2019) 310-345. https://doi.org/10.1016/j.jnucmat.2018.08.019
  34. P. Li, H. Dong, Y. Xia, X. Hao, S. Wang, L. Pan, J. Zhou, Inhomogeneous interface structure and mechanical properties of rotary friction welded TC4 titanium alloy/316L stainless steel joints, J. Manuf. Process. 33 (2018) 54-63. https://doi.org/10.1016/j.jmapro.2018.05.001