DOI QR코드

DOI QR Code

Optimization of different factors for an Agrobacterium-mediated genetic transformation system using embryo axis explants of chickpea (Cicer arietinum L.)

  • Received : 2022.02.15
  • Accepted : 2022.03.04
  • Published : 2022.03.31

Abstract

In this study, we developed a reliable and efficient Agrobacterium-mediated genetic transformation system by applying sonication and vacuum infiltration to six chickpea cultivars (ICCV2, ICCV10, ICCV92944, ICCV37, JAKI9218, and JG11) using embryo axis explants. Wounded explants were precultured for 3 days in shoot induction medium (SIM) before sonication and vacuum infiltration with an Agrobacterium suspension and co-cultivated for 3 days in co-cultivation medium containing 100 µM/l of acetosyringone and 200 mg/l of L-cysteine. Responsive explants with putatively transformed shoots were selected using a gradual increase in kanamycin from 25 mg/l to 100 mg/l in selection medium to eliminate escapes. Results showed optimal transformation efficiency at a bacterial density of 1.0, an optical density at 600 nm wavelength (OD600), and an infection duration of 30 min. The presence and stable integration of the β-glucuronidase (gusA) gene into the chickpea genome were confirmed using GUS histochemical assay and polymerase chain reaction. A high transformation efficiency was achieved among the different factors tested using embryo axis explants of cv. JAKI 9218. Of the six chickpea cultivars tested, JAKI9218 showed the highest transformation efficiency of 8.6%, followed by JG11 (7.2%), ICCV92944 (6.8%), ICCV37 (5.4%), ICCV2 (4.8%), and ICCV10 (4.6%). These findings showed that the Agrobacterium-mediated genetic transformation system will help transfer novel candidate genes into chickpea.

Keywords

Acknowledgement

The authors are grateful to the Department of Atomic Energy (DAE), Board of Research in Nuclear Sciences (BRNS), Government of India for financial assistance in the form of a project (DAE-BRNS No.2013/35/36/BRNS/1254, Dt: 30.07.2013).

References

  1. An X, Wang B, Liu L, Jiang H, Chen J, Ye S, Chen L, Guo P, Huang X, Peng D (2014) Agrobacterium-mediated genetic transformation and regeneration of transgenic plants using leaf midribs as explants in ramie [Boehmeria nivea (L.) Gaud]. Mol Biol Rep 41:3257-3269 https://doi.org/10.1007/s11033-014-3188-4
  2. Anbazhagan K, Bhatnagar-Mathur P, Vadez V, Dumbala SR, KaviKishor PB, Sharma KK (2015) DREB1A overexpression in transgenic chickpea alters key traits influencing plant water budget across water regimes. Plant Cell Rep 34:199-210 https://doi.org/10.1007/s00299-014-1699-z
  3. Arun M, Subramanyam K, Mariashibu TS, Theboral J, Shivanandhan G, Manickavasagam M, Ganapathi A (2015) Application of sonication in combination with vacuum infiltration enhances the Agrobacterium-mediated genetic transformation in Indian soybean cultivars. Appl Biochem Biotech 175:2266-2287 https://doi.org/10.1007/s12010-014-1360-x
  4. Atif RM, Patat-Ochatt EM, Svabova L, Ondrej V, Klenoticova H, Jacas L, Griga M, Ochatt SJ (2013) Gene transfer in legumes. Luttge U, Beyschag W, Francis D, Cushman J (eds.), Progress in Botany, Progress in Botany 74, 37-100
  5. Atkinson RG, Gardner RC (1991) Agrobacterium-mediated transformation of pepino and regeneration of transgenic plants. Plant Cell Rep 10(4):208-212 https://doi.org/10.1007/BF00234297
  6. Bett B, Gollasch S, Moore A, Harding R, Higgins TJV (2019) An improved transformation system for cowpea (Vigna unguiculata L. Walp) via sonication and a kanamycin-geneticin selection regime. Front Plant Sci 10:219 https://doi.org/10.3389/fpls.2019.00219
  7. Bhauso TD, Radhakrishnan T, Kumar A, Mishra GP, Dobaria JR, Patel K, Rajam MV (2014) Overexpression of bacterial mtlD gene in peanut improves drought tolerance through accumulation of mannitol. Sci World J 2014:125967 https://doi.org/10.1155/2014/125967
  8. Bull SE, Owiti JA, Niklaus M, Beeching JR, Gruissem W, Vanderschuren H (2009) Agrobacterium-mediated transformation of friable embryogenic calli and regeneration of transgenic cassava. Nat Protoc 4(12):1845-1854 https://doi.org/10.1038/nprot.2009.208
  9. Burgos L, Alburquerque N (2003) Ethylene inhibitors and low kanamycin concentrations improve adventitious regeneration from apricot leaves. Plant Cell Rep 21:1167-1174 https://doi.org/10.1007/s00299-003-0625-6
  10. Chakraborty J, Sen S, Ghosh P, Sengupta A, Basu D, Das S (2016) Homologous promoter derived constitutive and chloroplast targeted expression of synthetic cry1Ac in transgenic chickpea confers resistance against Helicoverpa armigera. Plant Cell Tiss Organ Cult 125:521-535 https://doi.org/10.1007/s11240-016-0968-7
  11. Che P, Chang S, Simon MK, Zhang Z, Shaharyar A, Ourada J, O'Neill D, Torres-Mendoza M, Guo Y, Marasigan KM, Vielle-Calzada J-P, Ozias-Akins P, Albertsen MC, Jones TD (2021) Developing a rapid and highly efficient cowpea regeneration, transformation and genome editing system using embryonic axis explants. The Plant J 106:817-830 https://doi.org/10.1111/tpj.15202
  12. Das Bhowmik SS, Cheng AY, Long H, Tan GZH, Hoang TML, Karbaschi MR, Williams B, Higgins TJV, Mundree SG (2019) Robust genetic transformation system to obtain non-chimeric transgenic chickpea. Front Plant Sci 10:524 https://doi.org/10.3389/fpls.2019.00524
  13. Das A, Datta S, Thakur S, Shukla A, Ansari J, Sujayanand GK, Chaturvedi SK, Kumar PA, Singh NP (2017) Expression of a chimeric gene encoding insecticidal crystal protein Cry1Aabc of Bacillus thuringiensis in chickpea (Cicer arietinum L.) confers resistance to gram pod borer (Helicoverpa armigera Hubner.). Front Plant Sci 8:1423 https://doi.org/10.3389/fpls.2017.01423
  14. Doyle JJ, Doyle JL (1990) Isolation of plant DNA from fresh tissue. Focus 12:12-14
  15. FAO (2020) FAOSTAT Database (http://faostat.fao.org/site/567/default.aspx, 2020 retrieved on December 18th, 2020)
  16. Gatti I, Guindon F, Bermejo C, Esposito A, Cointry E (2016) In vitro tissue culture in breeding programs of leguminous pulses: use and current status. Plant Cell Tiss Organ Cult 127:543-559 https://doi.org/10.1007/s11240-016-1082-6
  17. Gaur PM, Thudi M, Samineni S, Varshney RK (2014) Advances in chickpea genomics. In: Gupta S, Nadarajan N and Gupta DS (eds) Legumes in Omics era, Springer Science-Business Media, New York, 2014 pp 73-94
  18. Gelvin SB (2003) Agrobacterium-mediated plant transformation: the biology behind the "gene-jockeying" tool. Microbiol Mol Biol Rev 67(1):16-37 https://doi.org/10.1128/MMBR.67.1.16-37.2003
  19. Hada A, Krishnan V, Jaabir MSM, Kumari A, Jolly M, Praveen S, Sachdev A (2018) Improved Agrobacterium tumefaciens-mediated transformation of soybean [Glycine max (L.) Merr.] following optimization of culture conditions and mechanical techniques. In Vitro Cell Dev Biol - Plant 54:672-688 https://doi.org/10.1007/s11627-018-9944-8
  20. Ignacimuthu S, Prakash S (2006) Agrobacterium-mediated transformation of chickpea with α-amylase inhibitor gene for insect resistance. J Biosci 31:339-345 https://doi.org/10.1007/BF02704106
  21. Jacob C, Carrasco B, Schwember AR (2016) Advances in breeding and biotechnology of legume crops. Plant Cell Tiss Organ Cult 127:561-584 https://doi.org/10.1007/s11240-016-1106-2
  22. Jefferson RA, Kavanagh TA, Bevan NW (1987) GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901-3907 https://doi.org/10.1002/j.1460-2075.1987.tb02730.x
  23. Kapildev G, Chinnathambi A, Sivanandhan G, Rajesh M, Vasudevan V, Mayavan S, Arun M, Jeyaraj M, Alharbi SA, Selvaraj N, Ganapathi A (2016) High-efficient Agrobacterium-mediated in planta transformation in black gram (Vigna mungo (L.) Hepper). Acta Physiol Plant 38:205 https://doi.org/10.1007/s11738-016-2215-6
  24. Karthik S, Pavan G, Sathish S, Siva R, Kumar PS, Manickvasagam M (2018) Genotype-independent and enhanced in planta Agrobacterium tumefaciens-mediated genetic transformation of peanut [Arachis hypogaea (L.)]. 3Biotech 8:202
  25. Kaur RP, Chawla HS (2014) Effect of genotype and explant on Agrobacterium-mediated genetic transformation of chickpea (Cicer arietinum L.). J Food Leg 27(1):64-67
  26. Leonetti P, Accotto GP, Hanafy MS, Pantaleo V (2018) Viruses and phytoparasitic Nematodes of Cicer arietinum L.: Biotechnological approaches in interaction studies and for sustainable control. Front Plant Sci 9:319 https://doi.org/10.3389/fpls.2018.00319
  27. Mekala GK, Juturu VN, Mallikarjuna G, Kirti PB, Yadav SK (2016) Optimization of Agrobacterium-mediated genetic transformation of shoot tip explants of green gram (Vigna radiata (L.) Wilczek). Plant Cell Tiss Organ Cult 127:651-663 https://doi.org/10.1007/s11240-016-1085-3
  28. Muehlbauer FJ, Sarker A (2017) Economic importance of chickpea: Production, value, and world trade. Varshney RK, Thudi M and Muehlbauer FJ (eds), The Chickpea Genome, Compendium of Plant Genomes. Springer Dordrecht Heidelberg New York, pp 5-12
  29. Nene YL, Reddy MV, Haware MP, Ghanekar AM, Amin KS, Pande S, Sharma M (2012) Field diagnostics of chickpea diseases and their control. Information Bulletin No. 28 (Revised ISBN29-9066-199-2) International Crops Research Institute for Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, India; pp 66
  30. Nyaboga E, Tripathi JN, Manoharan R, Tripathi L (2014) Agrobacterium-mediated genetic transformation of yam (Dioscorea rotundata): an important tool for functional study of genes and crop improvement. Front Plant Sci 5:463 https://doi.org/10.3389/fpls.2014.00463
  31. Olhoft PM, Flagel LE, Donovan CM, Somers DA (2003) Efficient soybean transformation using hygromycin B selection in the cotyledonary-node method. Planta 216:723-735 https://doi.org/10.1007/s00425-002-0922-2
  32. Olhoft PM, Somers DA (2001) L-Cysteine increases Agrobacterium-mediated T-DNA delivery into soybean cotyledonary-node cells. Plant Cell Rep 20(8):706-711 https://doi.org/10.1007/s002990100379
  33. Pandey A, Yadav R, Kumar S, Kum ar A, Shukla P, Yadav A Sanyal I (2021) Expression of the entomotoxic Cocculus hirsutus trypsin inhibitor (ChTI) gene in transgenic chickpea enhances its underlying resistance against the infestation of Helicoverpa armigera and Spodoptera litura. Plant Cell Tiss Organ Cult 146:41-56 https://doi.org/10.1007/s11240-021-02041-2
  34. Pathak MR, Hamzah RY (2008) An effective method of sonicated assisted Agrobacterium-mediated transformation of chickpea. Plant Cell Tiss Organ Cult 93:65-71 https://doi.org/10.1007/s11240-008-9344-6
  35. Sadhu SK, Jogam P, Thampu RK, Abbagani S, Penna S, Peddaboina V (2020) High efficiency plant regeneration and genetic fidelity of regenerants by SCoT and ISSR markers in chickpea (Cicer arietinum L.). Plant Cell Tiss Organ Cult 141:465-477 https://doi.org/10.1007/s11240-020-01804-7
  36. Sainger M, Chaudhary D, Dahiya S, Jaiwal R, Jaiwal PK (2015) Development of an efficient in vitro plant regeneration system amenable to Agrobacterium-mediated transformation of a recalcitrant grain legume blackgram (Vigna mungo L. Hepper) Physiol Mol Biol Plants 21(4):505-517 https://doi.org/10.1007/s12298-015-0315-1
  37. Senthil G, Williamson B, Dinkins RD, Ramsay G (2004) An efficient transformation system for chickpea (Cicer arietinum L.). Plant Cell Rep 23:297-303 https://doi.org/10.1007/s00299-004-0854-3
  38. Srivastava J, Datta S, Mishra SP (2017) Development of an efficient Agrobacterium-mediated transformation system for chickpea (Cicer arietinum L.). Biologia 72(2):153-160 https://doi.org/10.1515/biolog-2017-0015
  39. Tague BW, Mantis J (2006) In planta Agrobacterium-mediated transformation by vacuum infiltration. Meth Mol Biol 323(III):215-223
  40. Teixeira da Silva JA, Dobranszki J (2014) Sonication and ultrasound: impact on plant growth and development. Plant Cell Tiss Organ Cult 117:131-143 https://doi.org/10.1007/s11240-014-0429-0
  41. Tiwari V, Chaturvedi AK, Mishra A, Jha B (2015) An efficient method of Agrobacterium-mediated genetic transformation and regeneration in local Indian cultivar of groundnut (Arachis hypogaea) using grafting. Appl Biochem Biotech 175:436-453 https://doi.org/10.1007/s12010-014-1286-3
  42. Tripathi L, Singh AK, Singh S, Singh R, Chaudhary S, Sanyal I, Amla DV (2013) Optimization of regeneration and Agrobacterium-mediated transformation of immature cotyledons of chickpea (Cicer arietinum L.). Plant Cell Tiss Organ Cult 113:513-527 https://doi.org/10.1007/s11240-013-0293-3
  43. van Rheenen HA, Pundir RPS, Miranda JH (1993) How to accelerate the genetic improvement of a recalcitrant crop species such as chickpea. Curr Sci 65:414-417
  44. Wang X, Liu S, Luo Y (2009) Research progression soybean tissue culture system and transformation. Soybean Sci 28:731-735
  45. Xing A, Zhang ZY, Sato S, Staswick P, Clemente T (2000) The use of the two T-DNA binary system to derive marker-free transgenic soybeans. In Vitro Cell Dev Biol-Plant 36:456-463 https://doi.org/10.1007/s11627-000-0082-7
  46. Yadav R, Mehrotra M, Singh AK, Niranjan A, Singh R, Sanyal I, Lehri A, Pande V, Amla DV (2017) Improvement in Agrobacterium-mediated transformation of chickpea (Cicer arietinum L.) by the inhibition of polyphenolics released during wounding of cotyledonary node explants. Protoplasma. 254:253-269 https://doi.org/10.1007/s00709-015-0940-0
  47. Yadav SK, Katikala S, Yellisetty V, Kannepalle A, Narayana JL, Maddi V, Mandapaka M, Shanker AK, Bandi V, Bharadwaja PK (2012) Optimization of Agrobacterium-mediated genetic transformation of cotyledonary node explants of Vigna radiata. SpringerPlus 1:59-67 https://doi.org/10.1186/2193-1801-1-59