DOI QR코드

DOI QR Code

Antioxidant and anti-inflammatory activities of phenolic compounds grafted with hyaluronic aicd derived from Liparis tessellatus eggs

  • Nguyen, Thanh Tri (Department of Aquatic Nutrition and Products Processing, Can Tho University) ;
  • Choi, Byeong-Dae (Department of Seafood Science and Technology, Gyeongsang National University)
  • Received : 2022.04.15
  • Accepted : 2022.05.07
  • Published : 2022.06.30

Abstract

Hyaluronic acid from Liparis tessellatus eggs (HALTE) was grafted with caffeic acid (CA-g-HALTE), ferulic acid (FA-g-HALTE), gallic acid (GA-g-HALTE), and nisin (Nisin-g-HALTE) and investigated for their anti-inflammatory and antioxidant potential in lipopolysaccharides-stimulated RAW 264.7 mouse macrophages. Nitric oxide (NO) generation and prostaglandin E2 activity were measured after treatment with the grafted HALTE samples. All grafted HALTE samples exhibited more antioxidant activity against 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) radicals than 2,2-diphenyl-1-picrylhydrazyl radicals. Nisin-g-HALTE showed the least antioxidant activity. Additionally, the NO assay results showed that all grafted samples had no cytotoxic effect on RAW 264.7 macrophages and reduced macrophage activity after treatment. The most effective concentrations of CA-g-HALTE and FA-g-HALTE were found to be above 100 ㎍/mL. Increased sample concentration resulted in increased activity except with Nisin-gHALTE at 100 ㎍/mL. CA-g-HALTE, FA-g-HALTE, GA-g-HALTE, and Nisin-g-HALTE were found to have antioxidant and anti-inflammatory potential, which can be further explored for use in food, cosmetic, nutraceutical, and biomedical applications.

Keywords

Acknowledgement

This work was supported by the National Research Foundation of Korea (NRF) and funded by the Ministry of Science and Information, Communication and Technology of Korea (MIST). Grant No. 2016R1D1A3B03931982.

References

  1. Abramson SB. Osteoarthritis and nitric oxide. Osteoarthr Cartil. 2008;16 Suppl 2:S15-20. https://doi.org/10.1016/S1063-4584(08)60008-4
  2. Ahmadian E, Dizaj SM, Eftekhari A, Dalir E, Vahedi P, Hasanzadeh A, et al. The potential applications of hyaluronic acid hydrogels in biomedicine. Drug Res. 2020;70:6-11. https://doi.org/10.1055/a-0991-7585
  3. Cheigh CI, Pyun YR. Nisin biosynthesis and its properties. Biotechnol Lett. 2005;27:1641-8. https://doi.org/10.1007/s10529-005-2721-x
  4. Chen SC, Yang MH, Chung TW, Jhuang TS, Yang JD, Chen KC, et al. Preparation and characterization of hyaluronic acid-polycaprolactone copolymer micelles for the drug delivery of radioactive iodine-131 labeled lipiodol. Biomed Res Int. 2017;2017:4051763.
  5. Chevalier X, Eymard F, Richette P. Biologic agents in osteoarthritis: hopes and disappointments. Nat Rev Rheumatol. 2013;9:400-10. https://doi.org/10.1038/nrrheum.2013.44
  6. Eom TK, Senevirathne M, Kim SK. Synthesis of phenolic acid conjugated chitooligosaccharides and evaluation of their antioxidant activity. Environ Toxicol Pharmacol. 2012;34:519-27. https://doi.org/10.1016/j.etap.2012.05.004
  7. Goldring MB, Berenbaum F. Emerging targets in osteoarthritis therapy. Curr Opin Pharmacol. 2015;22:51-63. https://doi.org/10.1016/j.coph.2015.03.004
  8. Graca MFP, Miguel SP, Cabral CSD, Correia IJ. Hyaluronic acid-based wound dressings: a review. Carbohydr Polym. 2020;241:116364. https://doi.org/10.1016/j.carbpol.2020.116364
  9. Ilias A, Liliom K, Greiderer-Kleinlercher B, Reitinger S, Lepperdinger G. Unbinding of hyaluronan accelerates the enzymatic activity of bee hyaluronidase. J Biol Chem. 2011;286:35699-707. https://doi.org/10.1074/jbc.M111.263731
  10. Kim YS, Lee SJ, Hwang JW, Kim EH, Park PJ, Jeong JH. Anti-inflammatory effects of extracts from Ligustrum ovalifolium H. leaves on RAW264.7 macrophages. J Korean Soc Food Sci Nutr. 2012;41:1205-10. https://doi.org/10.3746/JKFN.2012.41.9.1205
  11. Kwon MS, Mun OJ, Bae MJ, Lee SG, Kim M, Lee SH, et al. Anti-inflammatory activity of ethanol extracts from Hizikia fusiformis fermented with lactic acid bacteria in LPS-stimulated RAW264.7 macrophages. J Korean Soc Food Sci Nutr. 2015;44:1450-7. https://doi.org/10.3746/JKFN.2015.44.10.1450
  12. Liu J, Luo J, Ye H, Sun Y, Lu Z, Zeng X. In vitro and in vivo antioxidant activity of exopolysaccharides from endophytic bacterium Paenibacillus polymyxa EJS-3. Carbohydr Polym. 2010;82:1278-83. https://doi.org/10.1016/j.carbpol.2010.07.008
  13. Micali A, Medici N, Sottile A, Venza M, Venza I, Nigro V, et al. Prostaglandin E2 induction of binding activity to CRE and AP-2 elements in human T lymphocytes. Cell Immunol. 1996;174:99-105. https://doi.org/10.1006/cimm.1996.0298
  14. Nguyen TT, Neri TA, Choi BD. Characterization of hyaluronic acid extracted from Liparis tessellatus eggs grafted with phenolic acids and nisin. Int J Biol Macromol. 2020;157:45-50. https://doi.org/10.1016/j.ijbiomac.2020.04.137
  15. Oliver S, Vittorio O, Cirillo G, Boyer C. Enhancing the therapeutic effects of polyphenols with macromolecules. Polym Chem. 2016;7:1529-44. https://doi.org/10.1039/c5py01912e
  16. Ondresik M, Azevedo Maia FR, da Silva Morais A, Gertrudes AC, Dias Bacelar AH, Correia C, et al. Management of knee osteoarthritis. Current status and future trends. Biotechnol Bioeng. 2017;114:717-39. https://doi.org/10.1002/bit.26182
  17. Pfeiler E, Toyoda H, Williams MD, Nieman RA. Identification, structural analysis and function of hyaluronan in developing fish larvae (leptocephali). Comp Biochem Physiol B Biochem Mol Biol. 2002;132:443-51. https://doi.org/10.1016/S1096-4959(02)00060-X
  18. Pignatelli P, Fabietti G, Ricci A, Piattelli A, Curia MC. How periodontal disease and presence of nitric oxide reducing oral bacteria can affect blood pressure. Int J Mol Sci. 2020;21:7538. https://doi.org/10.3390/ijms21207538
  19. Rapta P, Valachova K, Gemeiner P, Soltes L. High-molar-mass hyaluronan behavior during testing its radical scavenging capacity in organic and aqueous media: effects of the presence of manganese(II) ions. Chem Biodivers. 2009;6:162-9. https://doi.org/10.1002/cbdv.200800075
  20. Sheldon IM, Cronin JG, Healey GD, Gabler C, Heuwieser W, Streyl D, et al. Innate immunity and inflammation of the bovine female reproductive tract in health and disease. Reproduction. 2014;148:R41-51.
  21. Shin JM, Gwak JW, Kamarajan P, Fenno JC, Rickard AH, Kapila YL. Biomedical applications of nisin. J Appl Microbiol. 2016;120:1449-65. https://doi.org/10.1111/jam.13033
  22. Son GM, Kim HY, Ryu JH, Chu CW, Kang DH, Park SB, et al. Self-assembled polymeric micelles based on hyaluronic acid-g-poly(D,L-lactide-co-glycolide) copolymer for tumor targeting. Int J Mol Sci. 2014;15:16057-68. https://doi.org/10.3390/ijms150916057
  23. Ticar BF, Rohmah Z, Ambut CV, Choi YJ, Mussatto SI, Choi BD. Enzyme-assisted extraction of anticoagulant polysaccharide from Liparis tessellatus eggs. Int J Biol Macromol. 2015;74:601-7. https://doi.org/10.1016/j.ijbiomac.2015.01.002
  24. Ticar BF, Rohmah Z, Mussatto SI, Lim JM, Park S, Choi BD. Hyaluronidase-inhibitory activities of glycosaminoglycans from Liparis tessellatus eggs. Carbohydr Polym. 2017;161:16-20. https://doi.org/10.1016/j.carbpol.2016.12.065
  25. Urgeova E, Vulganova K. Comparison of enzymatic hydrolysis of polysaccharides from eggshells membranes. Nova Biotechnol Chim. 2016;15:133-41. https://doi.org/10.1515/nbec-2016-0014
  26. Uttara B, Singh AV, Zamboni P, Mahajan RT. Oxidative stress and neurodegenerative diseases: a review of upstream and downstream antioxidant therapeutic options. Curr Neuropharmacol. 2009;7:65-74. https://doi.org/10.2174/157015909787602823
  27. Venditti P, Di Meo S. The role of reactive oxygen species in the life cycle of the mitochondrion. Int J Mol Sci. 2020;21:2173. https://doi.org/10.3390/ijms21062173
  28. Virag L, Szabo E, Gergely P, Szabo C. Peroxynitrite-induced cytotoxicity: mechanism and opportunities for intervention. Toxicol Lett. 2003;140-141:113-24. https://doi.org/10.1016/S0378-4274(02)00508-8