DOI QR코드

DOI QR Code

탄소필러와 에스테르계 바인더가 전도성 페이스트의 반응성 및 PET 필름과의 접착특성에 미치는 영향

Effect of Carbon Filler and Ester Type Binder on the Reactivity and Adhesive Properties with PET Film of Conductive Paste

  • 심창업 (주식회사엔씨티) ;
  • 구효선 (주식회사엔씨티) ;
  • 김연철 (공주대학교 신소재공학부 고분자공학전공)
  • 투고 : 2022.05.26
  • 심사 : 2022.07.03
  • 발행 : 2022.08.10

초록

유해화학물질의 감지 센서 개발을 위해 기재 필름과 전도성 페이스트의 접착 내구성 확보가 매우 중요하다. 본 연구에서는 폴리에틸렌테레프탈레이트(polyethylene terephthalate, PET) 필름에 폴리아닐린/그래핀나노플레이트(graphene nano plate, GNP) 페이스트를 코팅하여 접착 특성을 평가한 결과 cross cut 0B 또는 1B 등급으로 센서 적용에 문제가 있어 에스테르계 바인더를 이용하여 접착 특성 개선 연구를 수행하였다. 에스테르계 바인더가 10 wt% 이상 첨가되면 센서 적용이 가능한 cross cut 등급이 3B 이상을 나타내었다. 바인더의 과량 첨가는 전도성 페이스트의 전기적 특성에 영향을 줄 수 있으며 실제로 황산에 대한 반응성이 감소함을 확인하였다. 전기적 특성 개선을 위해 카본블랙(carbon black, CB) 함량 변화 시험을 수행하였고 CB 2 wt%에서 최적의 전기적 특성을 보임을 확인하였다.

It is very important to secure the adhesion durability between the base film and the conductive paste for the development of a sensor for detecting hazardous chemicals. In this study, an ester binder was used to improve the adhesive properties which can be a problem when applying the sensor to the cross cut 0B or 1B grade. This problem was found while evaluating the adhesive properties by coating the polyaniline/graphene nano plate (GNP) paste on the polyethylene terephthalate (PET) film. When 10 wt% or more of the ester-based binder was added, the cross cut grade to which the sensor can be applied was 3B or higher. It was confirmed that the excessive addition of the binder may affect the electrical properties of the conductive paste and actually decrease the reactivity to sulfuric acid. To improve the electrical property, a carbon black (CB) content was varied resulting in the optimum electrical property observed at 2 wt% of CB.

키워드

과제정보

이 논문은 천안실현기술개발 사업과 환경부의 폐자원에너지화 전문인력 양성사업으로 지원되었습니다.

참고문헌

  1. C. Eyholzer, Dried nanofibrillated cellulose and its bionanocomposites, PhD Dissertation, Lulea University of Technology, Sweden, (2011).
  2. F. W. Herrick, R. L. Casebier, J. K. Hamilton, and K. R. Sandberg, Microfibrillated cellulose: morphology and accessibility, J. Appl. Polym. Sci.: Appl. Polym. Symp., 37, NY, USA, May 24 (1982).
  3. S. W. Lee, D. Lee, and B. G. Seo, Sensitive and selective electrochemical glucose biosensor based on a carbon nanotube electronic film, Appl. Chem. Eng., 33, 2022, 188-194 (2022).
  4. N. Ku, A. Byeon and H. J. Lee, Electrochemical determination of bisphenol A concentrations using nanocomposites featuring multi-walled carbon nanotube, polyelectrolyte and tyrosinase, Appl. Chem. Eng., 32, 684-689 (2021).
  5. J. Bae, Chemical sensors using polymer/graphene composite and the effect of graphene content on sensor behavior, Appl. Chem. Eng., 31, 25-29 (2020).
  6. S. B. Sim and J. D. Han, Synthesis of SiO2/Ag core-shell nanoparticles for conductive paste application, Appl. Chem. Eng., 32, 28-34 (2021). https://doi.org/10.14478/ACE.2020.1101
  7. T. H. Kim, Novel conductive paste based on cellulose acetate butyrate, J. Korean Chem. Soc., 51, 171-177 (2007). https://doi.org/10.5012/JKCS.2007.51.2.171
  8. J. Vincent, C. Tung, A. R. Koltonow, H. D. Jang, and J. Huang, Graphene oxide based conductive glue as a binder for ultracapacitor electrodes, J. Mater. Chem., 22, 12993-12996 (2012). https://doi.org/10.1039/c2jm30819c
  9. H. Wu, C. Yang, J. Liu, X. Cui, B. Xie, and Z. Zhang, A highly conductive thermoplastic electrically conductive adhesive for flexible and low cost electronics, 15th Int. Conf. Electro. Pack. Technol., 1544-1546 (2014).
  10. P. Jezowski and P. L. Kowalczewski, Starch as a green binder for the formulation of conducting glue in supercapacitors, Polymers (Basel). 11, 1648-1660 (2019). https://doi.org/10.3390/polym11101648
  11. G. H. D. Tonoli, E. M. Teixeira, A. C. Correa, J. M. Marconcini, L. A. Caixeta, M. A. Pereira-da-Silva, and L. H. C. Mattoso, Cellulose micro/nanofibres from Eucalyptus kraft pulp: Preparation and properties, Carbohydrate Polym., 89, 80-88 (2012). https://doi.org/10.1016/j.carbpol.2012.02.052
  12. Q. Chen, R. P. Garcia, J. Munoz, U. Perez de Larraya, N. Garmendia, Q. Yao, and A. R. Boccaccini, Cellulose nanocrystals bioactive glass hybrid coating as bone substitutes by electrophoretic co-deposition: In situ control of mineralization of bioactive glass and enhancement of osteoblastic performance, ACS Appl. Mater. Interfaces, 7, 24715-24725 (2015). https://doi.org/10.1021/acsami.5b07294
  13. A. Iwatake, M. Nogi, and H. Yano, Cellulose nanofiber-reinforced polylactic acid, Compos. Sci. Technol., 68, 2103-2106 (2008). https://doi.org/10.1016/j.compscitech.2008.03.006
  14. T. Wang and L. T. Drzal, Cellulose-nanofiber-reinforced poly (lactic acid) composites prepared by a water-based approach, ACS Appl. Mater. Interfaces, 4, 5079-5085 (2012). https://doi.org/10.1021/am301438g
  15. A. Bhatnagar and M. Sain, Processing of cellulose nanofiber-reinforced composites, J. Reinfor. Plastics Compos., 24, 1259-1268 (2005). https://doi.org/10.1177/0731684405049864
  16. E. Bilotti, H. Deng, L. Lin, S. M. Zhang, T. Peijs, Q. Fu, and X. Gao (2012), Synergistic effect in conductive networks constructed with carbon nanofillers in different dimensions, Exp. Polym. Lett., 6, 159-168 (2011) https://doi.org/10.3144/expresspolymlett.2012.17
  17. H. Zhang, K. Wang, J. K. Kim, M. Y. Liu, P. C. Ma, S. Q. Wang, and R. Wang, Enhanced electrical conductivity of nanocomposites containing hybrid fillers of carbon nanotubes and carbon black, ACS Appl. Mater. Interfaces, 1, 1090-1096 (2009). https://doi.org/10.1021/am9000503
  18. K. Schulte, J. Sumfleth, and X. C. Adroher, Synergistic effects in network formation and electrical properties of hybrid epoxy nanocomposites containing multi-wall carbon nanotubes and carbon black, J. Mater. Sci., 44, 3241-3247 (2009). https://doi.org/10.1007/s10853-009-3434-7