DOI QR코드

DOI QR Code

Coronavirus disease 2019 (COVID-19) vaccine platforms: how novel platforms can prepare us for future pandemics: a narrative review

  • Lee, Jae Kyung (BK21 Graduate Program, Department of Biomedical Sciences, Korea University Guro Hospital, Korea University College of Medicine) ;
  • Shin, Ok Sarah (BK21 Graduate Program, Department of Biomedical Sciences, Korea University Guro Hospital, Korea University College of Medicine)
  • Received : 2021.12.14
  • Accepted : 2022.01.27
  • Published : 2022.04.30

Abstract

More than 2 years after the explosion of the coronavirus disease 2019 (COVID-19) pandemic, extensive efforts have been made to develop safe and efficacious vaccines against infections with severe acute respiratory syndrome coronavirus 2. The pandemic has opened a new era of vaccine development based on next-generation platforms, including messenger RNA (mRNA)-based technologies, and paved the way for the future of mRNA-based therapeutics to provide protection against a wide range of infectious diseases. Multiple vaccines have been developed at an unprecedented pace to protect against COVID-19 worldwide. However, important knowledge gaps remain to be addressed, especially in terms of how vaccines induce immunogenicity and efficacy in those who are elderly. Here, we discuss the various vaccine platforms that have been utilized to combat COVID-19 and emphasize how these platforms can be a powerful tool to react quickly to future pandemics.

Keywords

Acknowledgement

This research was funded by the Basic Science Research Program of the National Research Foundation of Korea (NRF) by the Ministry of Science, ICT & Future Planning (NRF-2019R1A2C1005961).

References

  1. World Health Organization (WHO). WHO coronavirus (COVID-19) dashboard [Internet]. Geneva: WHO; 2021 [cited 2021 Dec 14]. https://covid19.who.int/.
  2. Stadler K, Masignani V, Eickmann M, Becker S, Abrignani S, Klenk HD, et al. SARS: beginning to understand a new virus. Nat Rev Microbiol 2003;1:209-18. https://doi.org/10.1038/nrmicro775
  3. Janeway Jr CA, Travers P, Walport M, Shlomchik MJ. The distribution and functions of immunoglobulin isotypes. In: Janeway Jr CA, Travers P, Walport M, Shlomchik MJ, editors. Immunobiology: the immune system in health and disease. 5th ed. New York: Garland Science; 2001.
  4. World Health Organization (WHO). Tracking SARS-CoV-2 variants [Internet]. Geneva: WHO; 2021 [cited 2021 Dec 14]. https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/.
  5. World Health Organization (WHO). Weekly epidemiological update on COVID-19-25 [Internet]. Geneva: WHO; 2022 [cited 2022 Jan 17]. https://www.who.int/publications/m/item/weekly-epidemiological-update-on-covid-19---25-january-2022.
  6. Centers for Disease Control and Prevention (CDC). COVID data tracker: variant proportions [Internet]. Atlanta: CDC; 2022 [cited 2022 Jan 17]. https://covid.cdc.gov/covid-data-tracker/#monitoring-varaint-heading.
  7. Beatty AL, Peyser ND, Butcher XE, Cocohoba JM, Lin F, Olgin JE, et al. Analysis of COVID-19 vaccine type and adverse effects following vaccination. JAMA Netw Open 2021;4:e2140364. https://doi.org/10.1001/jamanetworkopen.2021.40364
  8. Bansal A, Trieu MC, Mohn KGI, Cox RJ. Safety, immunogenicity, efficacy and effectiveness of inactivated influenza vaccines in healthy pregnant women and children under 5 years: an evidence-based clinical review. Front Immunol 2021;12:744774. https://doi.org/10.3389/fimmu.2021.744774
  9. Pepin S, Dupuy M, Borja-Tabora CF, Montellano M, Bravo L, Santos J, et al. Efficacy, immunogenicity, and safety of a quadrivalent inactivated influenza vaccine in children aged 6-35 months: a multi-season randomised placebo-controlled trial in the Northern and Southern hemispheres. Vaccine 2019;37:1876-84. https://doi.org/10.1016/j.vaccine.2018.11.074
  10. Ott JJ, Wiersma ST. Single-dose administration of inactivated hepatitis A vaccination in the context of hepatitis A vaccine recommendations. Int J Infect Dis 2013;17:e939-44. https://doi.org/10.1016/j.ijid.2013.04.012
  11. Centers for Disease Control and Prevention (CDC). Polio vaccination [Internet]. Atlanta: CDC; 2018 [cited 2022 Jan 17]. https://www.cdc.gov/vaccines/vpd/polio/index.html.
  12. Zhang Y, Zeng G, Pan H, Li C, Hu Y, Chu K, et al. Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18-59 years: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. Lancet Infect Dis 2021;21:181-92. https://doi.org/10.1016/S1473-3099(20)30843-4
  13. Tanriover MD, Doganay HL, Akova M, Guner HR, Azap A, Akhan S, et al. Efficacy and safety of an inactivated whole-virion SARS-CoV-2 vaccine (CoronaVac): interim results of a double-blind, randomised, placebo-controlled, phase 3 trial in Turkey. Lancet 2021;398:213-22. https://doi.org/10.1016/S0140-6736(21)01429-X
  14. Wang H, Zhang Y, Huang B, Deng W, Quan Y, Wang W, et al. Development of an inactivated vaccine candidate, BBIBP-CorV, with potent protection against SARS-CoV-2. Cell 2020;182:713-21. https://doi.org/10.1016/j.cell.2020.06.008
  15. Xia S, Zhang Y, Wang Y, Wang H, Yang Y, Gao GF, et al. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBIBP-CorV: a randomised, double-blind, placebo-controlled, phase 1/2 trial. Lancet Infect Dis 2021;21:39-51. https://doi.org/10.1016/S1473-3099(20)30831-8
  16. Guo W, Duan K, Zhang Y, Yuan Z, Zhang YB, Wang Z, et al. Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18 years or older: a randomized, double-blind, placebo-controlled, phase 1/2 trial. EClinicalMedicine 2021;38:101010. https://doi.org/10.1016/j.eclinm.2021.101010
  17. Li XN, Huang Y, Wang W, Jing QL, Zhang CH, Qin PZ, et al. Effectiveness of inactivated SARS-CoV-2 vaccines against the Delta variant infection in Guangzhou: a test-negative case-control real-world study. Emerg Microbes Infect 2021;10:1751-9. https://doi.org/10.1080/22221751.2021.1969291
  18. Russell WC. Adenoviruses: update on structure and function. J Gen Virol 2009;90(Pt 1):1-20. https://doi.org/10.1099/vir.0.003087-0
  19. Buller RE, Runnebaum IB, Karlan BY, Horowitz JA, Shahin M, Buekers T, et al. A phase I/II trial of rAd/p53 (SCH 58500) gene replacement in recurrent ovarian cancer. Cancer Gene Ther 2002;9:553-66. https://doi.org/10.1038/sj.cgt.7700472
  20. Tatsis N, Ertl HC. Adenoviruses as vaccine vectors. Mol Ther 2004;10:616-29. https://doi.org/10.1016/j.ymthe.2004.07.013
  21. Dolzhikova IV, Zubkova OV, Tukhvatulin AI, Dzharullaeva AS, Tukhvatulina NM, Shcheblyakov DV, et al. Safety and immunogenicity of GamEvac-Combi, a heterologous VSV- and Ad5-vectored Ebola vaccine: an open phase I/II trial in healthy adults in Russia. Hum Vaccin Immunother 2017;13:613-20. https://doi.org/10.1080/21645515.2016.1238535
  22. Astuti I. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): an overview of viral structure and host response. Diabetes Metab Syndr 2020;14:407-12. https://doi.org/10.1016/j.dsx.2020.04.020
  23. Folegatti PM, Ewer KJ, Aley PK, Angus B, Becker S, Belij-Rammerstorfer S, et al. Safety and immunogenicity of the ChAdOx1 nCoV-19 vaccine against SARS-CoV-2: a preliminary report of a phase 1/2, single-blind, randomised controlled trial. Lancet 2020;396:467-78. https://doi.org/10.1016/S0140-6736(20)31604-4
  24. Voysey M, Costa Clemens SA, Madhi SA, Weckx LY, Folegatti PM, Aley PK, et al. Single-dose administration and the influence of the timing of the booster dose on immunogenicity and efficacy of ChAdOx1 nCoV-19 (AZD1222) vaccine: a pooled analysis of four randomised trials. Lancet 2021;397:881-91. https://doi.org/10.1016/S0140-6736(21)00432-3
  25. Sadoff J, Le Gars M, Shukarev G, Heerwegh D, Truyers C, de Groot AM, et al. Interim results of a phase 1-2a trial of Ad26. COV2.S COVID-19 vaccine. N Engl J Med 2021;384:1824-35. https://doi.org/10.1056/NEJMoa2034201
  26. Bos R, Rutten L, van der Lubbe JE, Bakkers MJ, Hardenberg G, Wegmann F, et al. Ad26 vector-based COVID-19 vaccine encoding a prefusion-stabilized SARS-CoV-2 Spike immunogen induces potent humoral and cellular immune responses. NPJ Vaccines 2020;5:91. https://doi.org/10.1038/s41541-020-00243-x
  27. Logunov DY, Dolzhikova IV, Shcheblyakov DV, Tukhvatulin AI, Zubkova OV, Dzharullaeva AS, et al. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. Lancet 2021;397:671-81. https://doi.org/10.1016/S0140-6736(21)00234-8
  28. Eichinger S, Warkentin TE, Greinacher A. Thrombotic thrombocytopenia after ChAdOx1 nCoV-19 vaccination: reply. N Engl J Med 2021;385:e11. https://doi.org/10.1056/NEJMc2107227
  29. Health Alert Network; Centers for Disease Control and Prevention (CDC). Emergency preparedness and response: cases of cerebral venous sinus thrombosis with thrombocytopenia after receipt of the Johnson & Johnson COVID-19 vaccine [Internet]. Atlanta: CDC; 2021 [cited 2022 Jan 17]. https://emergency.cdc.gov/han/2021/han00442.asp.
  30. Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine. N Engl J Med 2020;383:2603-15. https://doi.org/10.1056/NEJMoa2034577
  31. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, Abiona O, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science 2020;367:1260-3. https://doi.org/10.1126/science.abb2507
  32. Thomas SJ, Moreira ED Jr, Kitchin N, Absalon J, Gurtman A, Lockhart S, et al. Safety and efficacy of the BNT162b2 mRNA COVID-19 vaccine through 6 months. N Engl J Med 2021;385:1761-73. https://doi.org/10.1056/NEJMoa2110345
  33. Sahin U, Muik A, Vogler I, Derhovanessian E, Kranz LM, Vormehr M, et al. BNT162b2 vaccine induces neutralizing antibodies and poly-specific T cells in humans. Nature 2021;595:572-7. https://doi.org/10.1038/s41586-021-03653-6
  34. Ahmed SF, Quadeer AA, McKay MR. SARS-CoV-2 T cell responses elicited by COVID-19 vaccines or infection are expected to remain robust against Omicron. Viruses 2022;14:79. https://doi.org/10.3390/v14010079
  35. Tarke A, Sidney J, Methot N, Yu ED, Zhang Y, Dan JM, et al. Impact of SARS-CoV-2 variants on the total CD4+ and CD8+ T cell reactivity in infected or vaccinated individuals. Cell Rep Med 2021;2:100355. https://doi.org/10.1016/j.xcrm.2021.100355
  36. Stanojevic M, Geiger A, Ostermeier B, Sohai D, Lazarski C, Lang H, et al. Spike-directed vaccination elicits robust spike-specific T-cell response, including to mutant strains. Cytotherapy 2022;24:10-5. https://doi.org/10.1016/j.jcyt.2021.07.006
  37. Lopez Bernal J, Andrews N, Gower C, Gallagher E, Simmons R, Thelwall S, et al. Effectiveness of COVID-19 vaccines against the B.1.617.2 (Delta) variant. N Engl J Med 2021;385:585-94. https://doi.org/10.1056/NEJMoa2108891
  38. Gross R, Zanoni M, Seidel A, Conzelmann C, Gilg A, Krnavek D, et al. Heterologous ChAdOx1 nCoV-19 and BNT162b2 prime-boost vaccination elicits potent neutralizing antibody responses and T cell reactivity against prevalent SARS-CoV-2 variants. EBioMedicine 2022;75:103761. https://doi.org/10.1016/j.ebiom.2021.103761
  39. Bar-On YM, Goldberg Y, Mandel M, Bodenheimer O, Freedman L, Alroy-Preis S, et al. Protection against COVID-19 by BNT162b2 booster across age groups. N Engl J Med 2021;385:2421-30. https://doi.org/10.1056/NEJMoa2115926
  40. Perrie Y, Crofts F, Devitt A, Griffiths HR, Kastner E, Nadella V. Designing liposomal adjuvants for the next generation of vaccines. Adv Drug Deliv Rev 2016;99(Pt A):85-96. https://doi.org/10.1016/j.addr.2015.11.005
  41. Anderson EJ, Rouphael NG, Widge AT, Jackson LA, Roberts PC, Makhene M, et al. Safety and immunogenicity of SARSCoV-2 mRNA-1273 vaccine in older adults. N Engl J Med 2020;383:2427-38. https://doi.org/10.1056/NEJMoa2028436
  42. El Sahly HM, Baden LR, Essink B, Doblecki-Lewis S, Martin JM, Anderson EJ, et al. Efficacy of the mRNA-1273 SARSCoV-2 vaccine at completion of blinded phase. N Engl J Med 2021;385:1774-85. https://doi.org/10.1056/NEJMoa2113017
  43. Self WH, Tenforde MW, Rhoads JP, Gaglani M, Ginde AA, Douin DJ, et al. Comparative effectiveness of moderna, Pfizer-BioNTech, and Janssen ( Johnson & Johnson) vaccines in preventing COVID-19 hospitalizations among adults without immunocompromising conditions: United States, March-August 2021. MMWR Morb Mortal Wkly Rep 2021;70:1337-43. https://doi.org/10.15585/mmwr.mm7038e1
  44. Castiello T, Georgiopoulos G, Finocchiaro G, Claudia M, Gianatti A, Delialis D, et al. COVID-19 and myocarditis: a systematic review and overview of current challenges. Heart Fail Rev 2022;27:251-61. https://doi.org/10.1007/s10741-021-10087-9
  45. Barda N, Dagan N, Ben-Shlomo Y, Kepten E, Waxman J, Ohana R, et al. Safety of the BNT162b2 mRNA COVID-19 vaccine in a nationwide setting. N Engl J Med 2021;385:1078-90. https://doi.org/10.1056/NEJMoa2110475
  46. Colella G, Orlandi M, Cirillo N. Bell's palsy following COVID-19 vaccination. J Neurol 2021;268:3589-91. https://doi.org/10.1007/s00415-021-10462-4
  47. Repajic M, Lai XL, Xu P, Liu A. Bell's Palsy after second dose of Pfizer COVID-19 vaccination in a patient with history of recurrent Bell's palsy. Brain Behav Immun Health 2021;13:100217. https://doi.org/10.1016/j.bbih.2021.100217
  48. Ozonoff A, Nanishi E, Levy O. Bell's palsy and SARS-CoV-2 vaccines. Lancet Infect Dis 2021;21:450-2. https://doi.org/10.1016/S1473-3099(21)00076-1
  49. Teixeira FM, Teixeira HC, Ferreira AP, Rodrigues MF, Azevedo V, Macedo GC, et al. DNA vaccine using Mycobacterium bovis Ag85B antigen induces partial protection against experimental infection in BALB/c mice. Clin Vaccine Immunol 2006;13:930-5. https://doi.org/10.1128/CVI.00151-06
  50. Kodihalli S, Kobasa DL, Webster RG. Strategies for inducing protection against avian influenza A virus subtypes with DNA vaccines. Vaccine 2000;18:2592-9. https://doi.org/10.1016/S0264-410X(99)00485-5
  51. Rai N, Kaushik P, Rai A. Development of rabies DNA vaccine using a recombinant plasmid. Acta Virol 2005;49:207-10.
  52. Tebas P, Yang S, Boyer JD, Reuschel EL, Patel A, Christensen-Quick A, et al. Safety and immunogenicity of INO-4800 DNA vaccine against SARS-CoV-2: a preliminary report of an open-label, Phase 1 clinical trial. EClinicalMedicine 2021;31:100689. https://doi.org/10.1016/j.eclinm.2020.100689
  53. Pallesen J, Wang N, Corbett KS, Wrapp D, Kirchdoerfer RN, Turner HL, et al. Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen. Proc Natl Acad Sci U S A 2017;114:E7348-57.
  54. Magnusson SE, Altenburg AF, Bengtsson KL, Bosman F, de Vries RD, Rimmelzwaan GF, et al. Matrix-MTM adjuvant enhances immunogenicity of both protein- and modified vaccinia virus Ankara-based influenza vaccines in mice. Immunol Res 2018;66:224-33. https://doi.org/10.1007/s12026-018-8991-x
  55. Reimer JM, Karlsson KH, Lovgren-Bengtsson K, Magnusson SE, Fuentes A, Stertman L. Matrix-MTM adjuvant induces local recruitment, activation and maturation of central immune cells in absence of antigen. PLoS One 2012;7:e41451. https://doi.org/10.1371/journal.pone.0041451
  56. Heath PT, Galiza EP, Baxter DN, Boffito M, Browne D, Burns F, et al. Safety and efficacy of NVX-CoV2373 COVID-19 vaccine. N Engl J Med 2021;385:1172-83. https://doi.org/10.1056/NEJMoa2107659
  57. Arunachalam PS, Walls AC, Golden N, Atyeo C, Fischinger S, Li C, et al. Adjuvanting a subunit COVID-19 vaccine to induce protective immunity. Nature 2021;594:253-8. https://doi.org/10.1038/s41586-021-03530-2