DOI QR코드

DOI QR Code

The relationship between reactive oxygen species, DNA fragmentation, and sperm parameters in human sperm using simplified sucrose vitrification with or without triple antioxidant supplementation

  • Received : 2021.11.26
  • Accepted : 2022.04.04
  • Published : 2022.06.30

Abstract

Objective: This study examined whether the addition of triple antioxidants (3A)-10 µM acetyl-L-carnitine, 10 µM N-acetyl-L-cysteine, and 5 µM α-lipoic acid-in freezing-thawing medium during human sperm cryopreservation using the sucrose vitrification (SuV) and liquid nitrogen vapor (Vapor) techniques could improve post-thaw survival of spermatozoa. Methods: We analyzed 30 samples from healthy human sperm donors. Each sample was allocated into one of five groups: fresh control, SuV, SuV+3A, Vapor, and Vapor+3A. The sperm motility, morphology, viability, intracellular and extracellular reactive oxygen species (ROS) levels, and sperm DNA fragmentation (SDF) were evaluated. Results: The cryopreserved spermatozoa had significantly reduced percentages of motility (p<0.05) and viability (p<0.05). Antioxidant supplementation non-significantly improved these parameters (p>0.05). No significant differences were found in sperm morphology between the fresh and frozen-thawed groups (p>0.05). After freezing, the extracellular ROS levels in the frozen-thawed groups were significantly higher (p<0.05) than in the fresh group. However, we did not find any differences in intracellular ROS parameters among these groups (p>0.05). The SDF was higher in the SuV and Vapor groups than in the fresh group, but without statistical significance (p=0.075 and p=0.077, respectively). Conclusion: Cryopreservation had detrimental effects on sperm motility, viability, and extracellular ROS levels, without changing the morphology or intracellular ROS levels. Antioxidant supplementation was slightly effective in preventing SDF in frozen-thawed spermatozoa.

Keywords

Acknowledgement

The author would like to thank the Korat Health Center for their kind assistance with this study.

References

  1. Bunge RG, Sherman JK. Fertilizing capacity of frozen human spermatozoa. Nature 1953;172:767-8. https://doi.org/10.1038/172767b0
  2. Alvarez JG, Storey BT. Evidence for increased lipid peroxidative damage and loss of superoxide dismutase activity as a mode of sublethal cryodamage to human sperm during cryopreservation. J Androl 1992;13:232-41.
  3. Isachenko V, Isachenko E, Petrunkina AM, Sanchez R. Human spermatozoa vitrified in the absence of permeable cryoprotectants: birth of two healthy babies. Reprod Fertil Dev 2012; 24:323-6. https://doi.org/10.1071/RD11061
  4. Isachenko V, Maettner R, Petrunkina AM, Sterzik K, Mallmann P, Rahimi G, et al. Vitrification of human ICSI/IVF spermatozoa without cryoprotectants: new capillary technology. J Androl 2012;33: 462-8. https://doi.org/10.2164/jandrol.111.013789
  5. Hernandez-Garcia D, Wood CD, Castro-Obregon S, Covarrubias L. Reactive oxygen species: a radical role in development? Free Radic Biol Med 2010;49:130-43. https://doi.org/10.1016/j.freeradbiomed.2010.03.020
  6. Agarwal A, Durairajanayagam D, du Plessis SS. Utility of antioxidants during assisted reproductive techniques: an evidence based review. Reprod Biol Endocrinol 2014;12:112. https://doi.org/10.1186/1477-7827-12-112
  7. Aitken RJ, De Iuliis GN. On the possible origins of DNA damage in human spermatozoa. Mol Hum Reprod 2010;16:3-13. https://doi.org/10.1093/molehr/gap059
  8. Banihani S, Agarwal A, Sharma R, Bayachou M. Cryoprotective effect of L-carnitine on motility, vitality and DNA oxidation of human spermatozoa. Andrologia 2014;46:637-41. https://doi.org/10.1111/and.12130
  9. Takeo T, Horikoshi Y, Nakao S, Sakoh K, Ishizuka Y, Tsutsumi A, et al. Cysteine analogs with a free thiol group promote fertilization by reducing disulfide bonds in the zona pellucida of mice. Biol Reprod 2015;92:90. https://doi.org/10.1095/biolreprod.114.125443
  10. Shen T, Jiang ZL, Li CJ, Hu XC, Li QW. Effect of alpha-lipoic acid on boar spermatozoa quality during freezing-thawing. Zygote 2016;24:259-65. https://doi.org/10.1017/S0967199415000155
  11. Mongioi L, Calogero AE, Vicari E, Condorelli RA, Russo GI, Privitera S, et al. The role of carnitine in male infertility. Andrology 2016;4: 800-7. https://doi.org/10.1111/andr.12191
  12. Abdelrazik H, Sharma R, Mahfouz R, Agarwal A. L-carnitine decreases DNA damage and improves the in vitro blastocyst development rate in mouse embryos. Fertil Steril 2009;91:589-96. https://doi.org/10.1016/j.fertnstert.2007.11.067
  13. Jones DP. Redefining oxidative stress. Antioxid Redox Signal 2006;8:1865-79. https://doi.org/10.1089/ars.2006.8.1865
  14. Zeitoun MM, Al-Damegh MA. Effect of nonenzymatic antioxidants on sperm motility and survival relative to free radicals and antioxidant enzymes of chilled-stored ram semen. Open J Anim Sci 2014;5:50-8. https://doi.org/10.4236/ojas.2015.51007
  15. Packer L, Witt EH, Tritschler HJ. alpha-Lipoic acid as a biological antioxidant. Free Radic Biol Med 1995;19:227-50. https://doi.org/10.1016/0891-5849(95)00017-R
  16. Perera J, Tan JH, Jeevathayaparan S, Chakravarthi S, Haleagrahara N. Neuroprotective effects of alpha lipoic acid on haloperidol-induced oxidative stress in the rat brain. Cell Biosci 2011;1:12. https://doi.org/10.1186/2045-3701-1-12
  17. Yun JI, Gong SP, Song YH, Lee ST. Effects of combined antioxidant supplementation on human sperm motility and morphology during sperm manipulation in vitro. Fertil Steril 2013;100:373-8. https://doi.org/10.1016/j.fertnstert.2013.04.015
  18. Truong T, Gardner DK. Antioxidants improve IVF outcome and subsequent embryo development in the mouse. Hum Reprod 2017;32:2404-13. https://doi.org/10.1093/humrep/dex330
  19. Truong TT, Soh YM, Gardner DK. Antioxidants improve mouse preimplantation embryo development and viability. Hum Reprod 2016;31:1445-54. https://doi.org/10.1093/humrep/dew098
  20. World Health Organization. WHO laboratory manual for the examination and processing of human semen. 5th ed. Geneva: World Health Organization; 2010.
  21. Vutyavanich T, Piromlertamorn W, Nunta S. Rapid freezing versus slow programmable freezing of human spermatozoa. Fertil Steril 2010;93:1921-8. https://doi.org/10.1016/j.fertnstert.2008.04.076
  22. World Health Organization. WHO laboratory manual for the examination of human semen and sperm-cervical mucus interaction. 4th ed. Cambridge: Cambridge University Press; 1999.
  23. Kashou AH, Sharma R, Agarwal A. Assessment of oxidative stress in sperm and semen. Methods Mol Biol 2013;927:351-61. https://doi.org/10.1007/978-1-62703-038-0_30
  24. Evenson DP, Larson KL, Jost LK. Sperm chromatin structure assay: its clinical use for detecting sperm DNA fragmentation in male infertility and comparisons with other techniques. J Androl 2002;23:25-43. https://doi.org/10.1002/j.1939-4640.2002.tb02599.x
  25. Evenson DP, Jost LK, Baer RK, Turner TW, Schrader SM. Individuality of DNA denaturation patterns in human sperm as measured by the sperm chromatin structure assay. Reprod Toxicol 1991;5:115-25. https://doi.org/10.1016/0890-6238(91)90039-I
  26. Sudagar M, Keivanloo S, Hajibeglou A. Effect of different permeable and non-permeable cryoprotectants on the hatching rate of rainbow trout (Oncorhynchus mykiss) embryos. Aquac Int 2018;26:75-84. https://doi.org/10.1007/s10499-017-0192-4
  27. Di Santo M, Tarozzi N, Nadalini M, Borini A. Human sperm cryopreservation: update on techniques, effect on DNA integrity, and implications for ART. Adv Urol 2012;2012:854837. https://doi.org/10.1155/2012/854837
  28. Zheng J, Lu Y, Qu X, Wang P, Zhao L, Gao M, et al. Decreased sperm motility retarded ICSI fertilization rate in severe oligozoospermia but good-quality embryo transfer had achieved the prospective clinical outcomes. PLoS One 2016;11:e0163524. https://doi.org/10.1371/journal.pone.0163524
  29. Thomson LK, Fleming SD, Aitken RJ, De Iuliis GN, Zieschang JA, Clark AM. Cryopreservation-induced human sperm DNA damage is predominantly mediated by oxidative stress rather than apoptosis. Hum Reprod 2009;24:2061-70. https://doi.org/10.1093/humrep/dep214
  30. Isachenko E, Isachenko V, Katkov II, Dessole S, Nawroth F. Vitrification of mammalian spermatozoa in the absence of cryoprotectants: from past practical difficulties to present success. Reprod Biomed Online 2003;6:191-200. https://doi.org/10.1016/S1472-6483(10)61710-5
  31. Zhou D, Wang XM, Li RX, Wang YZ, Chao YC, Liu ZZ, et al. Improving native human sperm freezing protection by using a modified vitrification method. Asian J Androl 2021;23:91-6. https://doi.org/10.4103/aja.aja_29_20
  32. Kumar P, Wang M, Isachenko E, Rahimi G, Mallmann P, Wang W, et al. Unraveling subcellular and ultrastructural changes during vitrification of human spermatozoa: effect of a mitochondria-targeted antioxidant and a permeable cryoprotectant. Front Cell Dev Biol 2021;9:672862. https://doi.org/10.3389/fcell.2021.672862
  33. Hirano Y, Shibahara H, Obara H, Suzuki T, Takamizawa S, Yamaguchi C, et al. Relationships between sperm motility characteristics assessed by the computer-aided sperm analysis (CASA) and fertilization rates in vitro. J Assist Reprod Genet 2001;18:213-8.
  34. Krause W. Computer-assisted semen analysis systems: comparison with routine evaluation and prognostic value in male fertility and assisted reproduction. Hum Reprod 1995;10 Suppl 1:60-6. https://doi.org/10.1093/humrep/10.suppl_1.60
  35. Freour T, Jean M, Mirallie S, Dubourdieu S, Barriere P. Computer-assisted sperm analysis (CASA) parameters and their evolution during preparation as predictors of pregnancy in intrauterine insemination with frozen-thawed donor semen cycles. Eur J Obstet Gynecol Reprod Biol 2010;149:186-9. https://doi.org/10.1016/j.ejogrb.2009.12.029
  36. Donnelly ET, McClure N, Lewis SE. Cryopreservation of human semen and prepared sperm: effects on motility parameters and DNA integrity. Fertil Steril 2001;76:892-900. https://doi.org/10.1016/S0015-0282(01)02834-5
  37. Minaei MB, Barbarestani M, Nekoonam S, Abdolvahabi MA, Takzare N, Asadi MH, et al. Effect of Trolox addition to cryopreservation media on human sperm motility. Iran J Reprod Med 2012;10:99-104.
  38. Bansal AK, Bilaspuri GS. Impacts of oxidative stress and antioxidants on semen functions. Vet Med Int 2010;2010:686137.
  39. Keshtgar S, Ebrahimi B, Shid-Moosavi SM, Erfani N. NADPH oxidase 5 activation: a novel approach to human sperm cryoinjury. Cell Tissue Bank 2020;21:675-84. https://doi.org/10.1007/s10561-020-09845-0
  40. Gadea J, Molla M, Selles E, Marco MA, Garcia-Vazquez FA, Gardon JC. Reduced glutathione content in human sperm is decreased after cryopreservation: effect of the addition of reduced glutathione to the freezing and thawing extenders. Cryobiology 2011; 62:40-6. https://doi.org/10.1016/j.cryobiol.2010.12.001
  41. Koohestanidehaghi Y, Torkamanpari M, Shirmohamadi Z, Lorian K, Vatankhah M. The effect of cysteine and glutamine on human sperm functional parameters during vitrification. Andrologia 2021;53:e13870.
  42. Motemani M, Chamani M, Sharafi M, Masoudi R. Alpha-tocopherol improves frozen-thawed sperm quality by reducing hydrogen peroxide during cryopreservation of bull semen. Span J Agric Res 2017;15:e0401. https://doi.org/10.5424/sjar/2017151-9761
  43. Shi X, Hu H, Ji G, Liu R, Zhang J, Zhang H, et al. Effects of MTG and GSH on Human Sperm Motility and DNA Integrity during vitrification in the presence of trehalose. Adv Reprod Sci 2019;8:71-81. https://doi.org/10.4236/arsci.2020.81007
  44. Adewoyin M, Ibrahim M, Roszaman R, Isa M, Alewi N, Rafa A, et al. Male infertility: the effect of natural antioxidants and phytocompounds on seminal oxidative stress. Diseases 2017;5:9. https://doi.org/10.3390/diseases5010009
  45. Anwar AA, Tabri F, Adriani A, Djawad K, Bukhari A, Patellongi I. The effect of glutathione supplementation (L-Glutation, vitamin C, Alpha lipoic acid, and zinc) on total antioxidant status (TAS) level. Int J Med Rev Case Rep 2019;3:195-7.
  46. Baumgartner S, Mensink RP, Haenen GR, Bast A, Binder CJ, Bekers O, et al. The effects of vitamin E or lipoic acid supplementation on oxyphytosterols in subjects with elevated oxidative stress: a randomized trial. Sci Rep 2017;7:15288. https://doi.org/10.1038/s41598-017-15615-y
  47. Abdelhalim M, Qaid HA, Al-Mohy YH, Ghannam MM. The protective roles of vitamin E and α-lipoic acid against nephrotoxicity, lipid peroxidation, and inflammatory damage induced by gold nanoparticles. Int J Nanomedicine 2020;15:729-34. https://doi.org/10.2147/ijn.s192740
  48. Khalifa EA, Nabil Ahmed A, Hashem KS, Allah AG. Therapeutic effects of the combination of alpha-lipoic acid (ALA) and coenzyme Q10 (CoQ10) on cisplatin-induced nephrotoxicity. Int J Inflam 2020;2020:5369797.
  49. Halliwell B, Whiteman M. Measuring reactive species and oxidative damage in vivo and in cell culture: how should you do it and what do the results mean? Br J Pharmacol 2004;142:231-55. https://doi.org/10.1038/sj.bjp.0705776
  50. Cankut S, Dinc T, Cincik M, Ozturk G, Selam B. Evaluation of sperm DNA fragmentation via Halosperm technique and TUNEL assay before and after cryopreservation. Reprod Sci 2019;26:1575-81. https://doi.org/10.1177/1933719119828096
  51. Mupfiga C, Fisher D, Kruger T, Henkel R. The relationship between seminal leukocytes, oxidative status in the ejaculate, and apoptotic markers in human spermatozoa. Syst Biol Reprod Med 2013;59:304-11. https://doi.org/10.3109/19396368.2013.821540
  52. Aitken RJ, Smith TB, Jobling MS, Baker MA, De Iuliis GN. Oxidative stress and male reproductive health. Asian J Androl 2014;16:31-8. https://doi.org/10.4103/1008-682x.122203
  53. Tafani M, Sansone L, Limana F, Arcangeli T, De Santis E, Polese M, et al. the interplay of reactive oxygen species, hypoxia, inflammation, and sirtuins in cancer initiation and progression. Oxid Med Cell Longev 2016;2016:3907147. https://doi.org/10.1155/2016/3907147
  54. Larson-Cook KL, Brannian JD, Hansen KA, Kasperson KM, Aamold ET, Evenson DP. Relationship between the outcomes of assisted reproductive techniques and sperm DNA fragmentation as measured by the sperm chromatin structure assay. Fertil Steril 2003;80:895-902. https://doi.org/10.1016/S0015-0282(03)01116-6
  55. Yildiz C, Ottaviani P, Law N, Ayearst R, Liu L, McKerlie C. Effects of cryopreservation on sperm quality, nuclear DNA integrity, in vitro fertilization, and in vitro embryo development in the mouse. Reproduction 2007;133:585-95. https://doi.org/10.1530/REP-06-0256
  56. Cho CL, Esteves SC, Agarwal A. Novel insights into the pathophysiology of varicocele and its association with reactive oxygen species and sperm DNA fragmentation. Asian J Androl 2016;18:186-93. https://doi.org/10.4103/1008-682X.170441
  57. Agarwal A, Cho CL, Esteves SC, Majzoub A. Reactive oxygen species and sperm DNA fragmentation. Transl Androl Urol 2017;6 (Suppl 4):S695-6. https://doi.org/10.21037/tau.2017.05.40