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Introduction 

Changes in sperm occur during the cryopreservation cycle, includ-
ing membrane lipid peroxidation, membrane integrity changes, mi-
tochondrial damage, acrosome damage, DNA denaturation, and 
chromatin damage [1]. The harmful changes in the semen samples 
of different species are caused by reactive oxygen species (ROS) and 
free radicals during the freezing process [2,3]. ROS, along with low 
antioxidant levels in seminal plasma, causes oxidative stress, which 
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leads to a reduction in semen quality [4]. Enzymatic and antioxidant 
systems in sperm and seminal plasma are responsible for reducing or 
neutralizing free radicals, but these systems are not always sufficient 
for protection [5]. To reduce oxidative damage during the freezing 
process, an extender supplement with an appropriate antioxidant 
system is required [4]. Melatonin (N-acetyl-5-methoxytryptamine; 
MT) is an indoleamine hormone that is synthesized from tryptophan 
in the pineal gland [6-8]. MT neutralizes the toxic effects of ROS by 
isolating reactive free radicals. This compound helps maintain cellu-
lar function by stimulating antioxidant enzymes and neutralizing 
toxic species such as nitric oxide, peroxynitrite anion, and hydrogen 
peroxide [9,10]. 

Evidence has shown that MT has the ability to improve sperm pa-
rameters, including total motility, plasma membrane integrity (PMI), 
survival rate, and DNA integrity, and decrease lipid peroxidation 
[4,11]. Selenium (Se) is a rare biological mineral that regulates mito-



chondrial function, thyroid hormone synthesis, and phagocytic func-
tion, among other metabolic functions [10]. Se acts as part of antiox-
idant enzymes such as glutathione peroxidase (GPx) [12]. By detoxi-
fying hydrogen peroxide, this enzyme protects against peroxidative 
damage [13]. Several endogenous antioxidants protect epididymal 
sperm from oxidative stress [14]. Studies have shown that Se can im-
prove the quality of sperm in impotent camels [15]. As a result of its 
antioxidant properties, this compound has been studied extensively 
in animal research [16]. The aim of the present study was to evaluate 
the antioxidant effect of MT and Se on the functional parameters of 
epididymal rat sperm, including motility, cell membrane and mito-
chondrial integrity, and DNA damage during freezing. 

Methods 

1. Animals 
A total of 20 adult male Wistar albino rats weighing 150–200 g 

(10–12 weeks old) were used as sperm donors. The animals were ob-
tained from the Animal Center at Yasuj University of Medical Sciences. 
All animal housing and surgical procedures were carried out in accor-
dance with the guidelines of the Institutional Animal Care and Use 
Committee of Yasuj University of Medical Sciences, Yasuj, Iran. The rats 
were housed in a pathogen-free environment in animal cages with 
standard food and water at a temperature of 23°C ± 1°C with a rela-
tive humidity of 55% ± 10% under a 14-hour light/10-hour dark cycle. 

2. Semen collection 
The rats were killed using cervical dislocation. During surgery and 

under sterile conditions, the tails of the epididymis that contained 
sperm were collected and placed in a 35 mm culture dish containing 
5 mL of HEPES buffered Tyrode’s lactate (TL-HEPES) solution with 3 
mg/mL bovine serum albumin supplementation. Incisions were 
made at the tail of the epididymis using insulin injection needles to 
extract the sperm. The samples were then incubated at 37°C with 5% 
CO2 for 5 minutes to remove the sperm from the epididymis. The 
sperm suspension was poured into a 5 mL conical tube and stored at 
22°C for further experiments. The TL-HEPES extender solution was pre-
pared as follows: 2.3 mM KCl, 114 mM NaCl, 0.4 mM NaH2PO4•H2O, 0.2 
mM CaCl•H2O, 0.5 mM MgCl•6H2O, 2 mM NaHCO3, 10 mM lactic acid, 
10 mM HEPES, and 10 mL/L penicillin-streptomycin [17]. 

3. Freezing and thawing procedure 
Semen samples with a concentration of 20 × 106 sperm/mL to 

30 × 106 sperm/mL were diluted in a TL-HEPES extender solution, 
and the semen of each rat was divided into six groups, with four 
groups containing MT and Se at concentrations of 0.5 mM and 1 mM 
and two groups containing no added material, which were used as 

fresh and cryopreservation control groups, respectively [18,19]. The 
samples were cooled to 4°C and equilibrated at this temperature for 2 
hours. Next, 0.5 mL of each sample was placed on French straws and 
sealed using a sealing device. They were then cooled for 10 minutes 
in nitrogen vapor (suspended 3 cm above liquid nitrogen) before be-
ing poured into liquid nitrogen at –196°C. The frozen straws were 
thawed for 30 seconds in a 37°C water bath before evaluation [20]. 

4. Semen evaluation 
1) Computer-Assisted Sperm Analysis 

Sperm motility analysis was performed using computer-assisted 
sperm analysis (CASA; SCA, Microptic Co., Barcelona, Spain). In this 
study, a 10 µL thawed semen sample was placed on a Makler cham-
ber slide that had already been preheated to 37°C. The evaluated pa-
rameters included motility (%), progressive motility (%), average 
path velocity (μm/sec), curvilinear velocity (μm/sec), linearity (%), 
straight-line velocity (μm/sec), straightness (%), wobble (%), and 
beat cross-frequency (Hz), as shown in Table 1. 

2) Integrity of the DNA 
The sperm DNA integrity was assessed using acridine orange (AO) 

staining. The heated samples were first put in a centrifuge for 5 min-
utes at 500 × g. The pellets were then mixed with a null ethylenedi-
aminetetraacetic acid (EDTA) buffer solution containing 10 mmol Tris, 
0.15 mol NaCl, and 1 mmol EDTA and were dissolved at a concentra-
tion of 5 × 106 sperm/mL. A total of 400 µL of acid detergent solution 
and 1,200 µL of AO staining solution were added to the mixture. Af-
ter 15 seconds, the sperm were evaluated using flow cytometry [21]. 

3) Plasma membrane integrity 
The hypo-osmotic test was used to evaluate the sperm PMI. First, 

50 µL of thawed semen was mixed with 50 µL of HOS solution (1.35 
g fructose, 0.735 g sodium citrate with 100 mL distilled water at an 
osmotic pressure of 190 mOsmol). The resulting solution was then 
incubated in an incubator (37°C, 45 minutes). Finally, 10 µL of the 
sample was placed on a dry and preheated slide and covered with a 
slip cover. A contrast phase microscope (Olympus BX20) with × 400 
magnification was used for microscopic evaluation. In each slide, 200 
spermatozoa were studied, and sperm with swollen and twisted tails 
were considered to have integrated membranes [22]. 

5. Mitochondrial membrane integrity 
Molecular probes of 5,5′, 6,6′-tetrachloro1,1′3,3′-tetramethyl benzim-

idazolyl-carbocyanine iodide (JC-1)-PI were used to evaluate the mito-
chondrial membranes of thawed sperms. For this purpose, thawed se-
men samples were put in a centrifuge for 5 minutes at 500 ×g. The 
spermatozoa were then dissolved in 487 µL of phosphate-buffered 
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saline solution. Then, 10 µL of a JC-1 solution and 3 µL of a PI solution 
were added. Finally, they were incubated in a warm water bath (37°C 
for 30 minutes) in a dark room. Mitochondrial membrane potential 
(MMP) analysis was performed using CytExpert 2.2 software [23]. 

6. Flow cytometry 
Flow cytometry was performed using a Cytoflex flow cytometer 

(Beckman Coulter). This system contains a 50 MW laser output (488 
nm laser beam) with 610 ±20 nm, 585 ±42 nm, and 525 ±40 nm 
emission filters. 10×103 spermatozoa were collected for each analysis.  

7. Statistical analysis  
The Shapiro-Wilk test was used to analyze the normality of data 

distribution. One-way analysis of variance and the Tukey test were 
used to detect differences between the groups and to determine the 
locations of differences. Statistical analysis was carried out using IBM 
SPSS Statistics for Windows ver. 20 (IBM Corp., Armonk, NY, USA). The 
results are presented as the mean percentage and the standard error 
of the mean, and p < 0.05 was considered to indicate statistical sig-
nificance. 

Results 

The addition of 1 mM and 0.5 mM MT and Se to the extender led 
to improved total motility compared to the frozen control group. In 
addition, 1 mM MT was associated with more total motility than the 
other groups. However, no statistically significant differences be-
tween the groups were observed for the other dynamic parameters 
(Table 1). A higher PMI was observed in the 1 mM Se group than in 
either MT group. In addition, the highest percentage of sperm with 
high MMP was observed in the 0.5 mM Se group, and the lowest was 
observed in the control group (45.92% ± 4.53% and 39.45% ± 3.52%, 
respectively). MT and Se reduced DNA damage at both concentra-
tions (Table 2). 

Discussion 

Sperm cytoplasm is prone to the overproduction of ROS and expo-
sure to severe oxidative stress during the freezing process due to an 
insufficient immune response and concentration of antioxidants 
[21,22]. Balanced and optimal amounts of ROS are necessary for im-

Table 1. Effects of a complemented semen extender with nothing added (control) or two concentrations of melatonin or selenium on 
various CASA kinetic parameters in frozen/thawed rat sperm

Group Fresh control Freezing control
Melatonin Selenium

0.5 mM 1 mM 0.5 mM 1 mM
Total motility (%) 87.32 ± 4.21 59.21 ± 1.31a) 67.00 ± 2.63 69.89 ± 3.05b) 65.01 ± 4.14 61.09 ± 4.21
Progressive motility (%) 59.44 ± 2.81 39.30 ± 2.05a) 45.21 ± 2.00 46.83 ± 3.14 39.11 ± 4.11 43.62 ± 2.12
VCL (μm/sec) 95.15 ± 3.03 83.30 ± 3.31a) 89.21 ± 1.76 93.33 ± 1.69 81.36 ± 5.72 84.70 ± 3.09
VSL (μm/sec) 70.00 ± 4.22 45.01 ± 4.42a) 48.52 ± 2.27 56.81 ± 3.45 39.03 ± 6.30 51.73 ± 1.25
VAP (μm/sec) 62.15 ± 3.15 52.66 ± 4.33a) 57.02 ± 2.69 64.07 ± 3.72 48.68 ± 6.00 57.33 ± 2.70
LIN (%) 73.60 ± 5.01 50.42 ± 5.17a) 51.05 ± 2.55 57.42 ± 4.09 43.66 ± 5.25 58.03 ± 1.56
STR (%) 80.40 ± 3.20 71.09 ± 3.67a) 71.21 ± 1.52 75.43 ± 1.76 66.92 ± 4.47 76.71 ± 1.04
WOB (%) 72.32 ± 3.77 62.81 ± 3.11a) 63.47 ± 2.17 67.51 ± 4.07 59.22 ± 3.59 67.03 ± 2.12
BCF (Hz) 14.54 ± 1.01 10.97 ± 0.35a) 9.52 ± 0.63 9.31 ± 1.07 10.85 ± 0.61 10.79 ± 0.40

Values are presented as the mean±standard error of the mean.
CASA, computer-assisted sperm analysis; VCL, curvilinear velocity; VSL, straight-line velocity; VAP, average path velocity; LIN, linearity; STR, straightness; WOB, 
wobble; BCF, beat cross frequency.
a)p<0.05, significant differences vs. fresh control group; b)p<0.05, significant differences vs. frozen control group.

Table 2. Effects of complemented semen extender with nothing added (control) or two concentrations of either melatonin or selenium on 
plasma membrane integrity, MMP, and DNA damage in frozen/thawed rat sperm

Group Fresh control Freezing control
Melatonin Selenium

0.5 mM 1 mM 0.5 mM 1 mM
PMI (%) 51.70 ± 2.26 40.51 ± 1.43a) 36.15 ± 1.49b) 35.20 ± 0.27b) 39.93 ± 1.30 42.35 ± 1.01
High MMP (%) 60.31 ± 3.54 39.45 ± 3.52a) 43.51 ± 1.09 44.00 ± 1.15 45.92 ± 4.53b) 44.16 ± 1.03
DNA damage (%) 5.03 ± 3.12 9.61 ± 3.25a) 4.22 ± 1.50b) 3.66 ± 1.50b) 3.15 ± 1.01b) 3.42 ± 0.91b)

Values are presented as the mean±standard error of the mean.
MMP, mitochondrial membrane potential; PMI, plasma membrane integrity.   
a)p<0.05, significant differences vs. fresh control group; b)p<0.05, significant differences vs. frozen control group.
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proved performance and enhance motility with increased cyclic ade-
nosine monophosphate and protein phosphorylation; however, high 
amounts of ROS resulting from a lack of sufficient antioxidant capaci-
ty can have harmful and toxic effects [24]. Oxidative stress caused by 
free radicals produced in the sperm cytoplasm has a significant role 
in reducing sperm fertility [25]. During freezing, the antioxidant ca-
pacity of frozen sperm decreases. However, semen dilution processes 
can reduce or eliminate antioxidant compositions in semen and lead 
to increased oxidative stress [24]. Several main endogenous antioxi-
dant systems such as GPx, glutathione reductase (GSH), and super-
oxide dismutase (SOD) have been introduced for sperm [26]. Studies 
have shown that MT has a positive effect on the activity of antioxi-
dant enzymes and increased proteins of SOD, GPx, GSH and catalase 
by increasing the synthesis of intracellular antioxidants [27,28]. Se 
can also improve the antioxidant activity of GPx enzymes [10]. Sperm 
mitochondria have the ability to produce some amount of ROS prod-
ucts in response to oxidative phosphorylation functions [29]. Freez-
ing increases the release of ROS, especially superoxide anion and hy-
drogen peroxide, by altering the structure of the mitochondrial 
membrane [30]. According to the results, MT and Se improved sperm 
MMP in the frozen groups by increasing the activity of antioxidant 
enzymes and decreasing intracellular ROS. The presence of MT in 
freezing solutions was associated with a higher frequency of samples 
with a high MMP and a lower rate of PMI (as an indicator of a healthy 
plasma membrane). This study observed a correlation between 
sperm MMP and PMI. These results are comparable to a study by 
Gungor et al. [23] that found that gallic acid gave sperm more ener-
gy, thereby improving MMP in comparison to the control group, but 
resulted in a significant reduction in PMI compared to the control 
group. The highest percentage of high MMP was observed in sperm 
from the 0.5 mM Se group. Mitochondrial activity was higher in the 
0.5 mM Se group than in the frozen control group, but there were no 
significant differences between the MT and Se groups. It is notable 
that MT can protect the mitochondrial structure by reducing oxygen 
consumption and O2 production and, as a result, reduce lipid peroxi-
dation and play an important role in mitochondrial activation [31]. In 
addition, supplementation with Se has the ability to improve the mi-
tochondrial activity of sperm [32]. 

Proper motility is one of the essential characteristics of sperm re-
lated to fertility, and any disorder related to motility can prevent 
sperm from reaching the fertilization site [33]. Our study showed 
that the presence of 1 mM MT in the extender caused a significant 
increase in total motility. In addition, the highest degree of progres-
sive motility corresponded to this same concentration of MT; howev-
er, no significant difference was observed in the frozen control group. 
The results of this part of the study are consistent with those of a 
study by Fadl et al. [18] that found that concentrations of 1 mM MT 

corresponded to the highest degree of progressive motility com-
pared to other doses as well as the control group. In addition, the 
present study showed that adding Se to the extender did not signifi-
cantly improve rat sperm motility after thawing. These results contra-
dict those of a study by Khalil et al. [19] that found that Se at concen-
trations of 1 and 1.5 mM significantly increased sperm motility. 
Dorostkar et al. also evaluated different doses of Se (1 mg/mL, 2 mg/
mL, 4 mg/mL, and 8 mg/mL) in buffalo and found that doses of 1 
mg/mL and 2 mg/mL significantly improved sperm motility com-
pared to the control group, while doses of 4 mg/mL and 8 mg/mL 
showed a decrease in sperm motility compared to the control group 
[34]. These contradictions might be explained by differences in 
sperm type, supplement concentrations, and sperm preparation and 
freezing processes. 

The plasma membrane is involved in protecting the physiology of 
sperm cytosol. In freezing, osmotic changes influence membrane in-
tegrity and sperm homeostasis by changing salt concentrations [35]. 
In the current study, although the PMI in the group containing 1 mM 
Se did not differ from that of the frozen control group, it had the 
highest amount compared to the other groups. The motility scores 
for the Se groups were not higher than those of the MT group, but 
better and more acceptable results were observed for PMI parame-
ters than in the MT group. In addition, PMI in the group with 0.5 mM 
Se concentration was not statistically significant compared to the 
frozen control group, while the concentration of 1 mM Se had the 
highest PMI. This finding can probably be attributed to the ability of 
Se (at a concentration of 0.5 mM) to reduce lipid peroxidation and 
regulate osmotic balance and pH. 

The last part of the results of this study showed that adding MT 
and Se to the freezing medium significantly reduced DNA damage 
after thawing, which is consistent with the results of a study by Re-
zaeian et al. [32] and Breininger et al. [36] that found that Se concen-
trations (5 µL and 1 mg and 2 mg, respectively) reduced DNA dam-
age after freezing. Pool et al. also observed that all doses of supple-
mentary MT (0.1 µM, 1 µM, 10 µM, and 100 µM) helped reduce DNA 
damage compared to the control group [31]. Adding these supple-
ments to increase the antioxidant capacity of freezing solutions may 
increase the density of chromatin structure and protect sperm from 
freezing damage. 

In this study, the presence of 1 mM MT in the extender corre-
sponded to the highest degree of motility, and the addition of 0.5 
mM Se was associated with the highest degree of mitochondrial 
function in post-thaw rat sperm. However, more extensive studies 
that examine a wider range of concentrations are required to further 
understand the impact of these factors on fertility. 
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