Acknowledgement
본 연구는 한국전력공사 자체연구개발과제(R21SA02)와 기초연구과제(R21XO01-47)의 지원을 받았습니다. 이에 감사드립니다.
References
- Al-Nuaimy, W., Huang, Y., Nakhkash, M., Fang, M.T.C., Nguyen, V.T., Eriksen, A. (2000), "Automatic detection of buried utilities and solid objects with GPR using neural networks and pattern recognition", Journal of applied Geophysics, Vol. 43, No. 2-4, pp. 157-165. https://doi.org/10.1016/S0926-9851(99)00055-5
- Benedetto, A., Pajewski, L. (2015), Civil Engineering Applications of Ground Penetrating Radar, Springer, London, pp. i-xi.
- Bochkovskiy, A., Wang, C.Y., Liao, H.Y.M. (2020), "Yolov4: Optimal speed and accuracy of object detection", arXiv preprint arXiv:2004.10934, pp. 1-17.
- Chae, J.H., Ko, H.Y., Lee, B.G., Kim, N.G. (2019), "A study on the pipe position estimation in GPR images using deep learning based convolutional neural network", Journal of Internet Computing and Services, Vol. 20, No. 4, pp. 39-46.
- Fang, Y., Guo, X., Chen, K., Zhou, Z., Ye, Q. (2021), "Accurate and automated detection of surface knots on sawn timbers using YOLO-V5 model", BioResources, Vol. 16, No. 3, pp. 5390-5406. https://doi.org/10.15376/biores.16.3.5390-5406
- Giannakis, I. (2016), Realistic numerical modelling of ground penetrating radar for landmine detection, Ph.D. Thesis, University of Edinburgh, pp. 1-268.
- Giannopoulos, A. (1998), The investigation of transmission-line matrix and finite-difference time-domain methods for the forward problem of ground probing radar, Ph.D. Thesis, University of York, pp. 1-258.
- Giannopoulos, A. (2005), "Modelling ground penetrating radar by GprMax", Construction and Building Materials, Vol. 19, No. 10, pp. 755-762. https://doi.org/10.1016/j.conbuildmat.2005.06.007
- Kim, H.M., Bae, H.R. (2021), "A study on GPR image classification by semi-supervised learning with CNN", The Journal of Bigdata, Vol. 6, No. 1, pp. 197-206.
- Lee, D.Y. (2018), "Analysis of sewer pipe defect and ground subsidence risk by using CCTV and GPR monitering results", Journal of the Korean Geosynthetics Society, Vol. 17, No. 3, pp. 47-55. https://doi.org/10.12814/JKGSS.2018.17.3.047
- Peplinski, N.R., Ulaby, F.T., Dobson, M.C. (1995), "Dielectric properties of soils in the 0.3-1.3-GHz range", IEEE Transactions on Geoscience and Remote Sensing, Vol. 33, No. 3, pp. 803-807. https://doi.org/10.1109/36.387598
- Pham, M.T., Lefevre, S. (2018), "Buried object detection from B-scan ground penetrating radar data using Faster-RCNN", Proceedings of the IGARSS 2018 - 2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, pp. 6804-6807.
- Redmon, J., Divvala, S., Girshick, R., Farhadi, A. (2016), "You only look once: Unified, real-time object detection", Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, pp. 779-788.
- Taflove, A., Hagness, S.C., Piket-May, M. (2005), Computational Electrodynamics: The Finite-Difference Time-Domain Method, The Electrical Engineering Handbook, 3, Elsevier, Burlington, pp. 629-670.
- Tian, Y., Yang, G., Wang, Z., Wang, H., Li, E., Liang, Z. (2019), "Apple detection during different growth stages in orchards using the improved YOLO-V3 model", Computers and Electronics in Agriculture, Vol. 157, pp. 417-426. https://doi.org/10.1016/j.compag.2019.01.012
- Warren, C., Giannopoulos, A. gprMax user guide, https://docs.gprmax.com/en/latest/ (Apr 14, 2022)
- Warren, C., Giannopoulos, A., Giannakis, I. (2016), "gprMax: Open source software to simulate electromagnetic wave propagation for Ground Penetrating Radar", Computer Physics Communications, Vol. 209, pp. 163-170. https://doi.org/10.1016/j.cpc.2016.08.020
- Yuan, C., Li, S., Cai, H., Kamat, V.R. (2018), "GPR signature detection and decomposition for mapping buried utilities with complex spatial configuration", Journal of Computing in Civil Engineering, Vol. 32, No. 4, pp. 1-15.