DOI QR코드

DOI QR Code

Microbiota Communities of Healthy and Bacterial Pustule Diseased Soybean

  • Kim, Da-Ran (Resarch Institute of Life Science, Gyeongsang National University) ;
  • Kim, Su-Hyeon (Division of Applied Life Science (BK21Plus), Gyeongsang National University) ;
  • Lee, Su In (Division of Applied Life Science (BK21Plus), Gyeongsang National University) ;
  • Kwak, Youn-Sig (Resarch Institute of Life Science, Gyeongsang National University)
  • Received : 2022.05.10
  • Accepted : 2022.06.29
  • Published : 2022.08.01

Abstract

Soybean is an important source of protein and for a wide range of agricultural, food, and industrial applications. Soybean is being affected by Xanthomonas citri pv. glycines, a causal pathogen of bacterial pustule disease, result in a reduction in yield and quality. Diverse microbial communities of plants are involved in various plant stresses is known. Therefore, we designed to investigate the microbial community differentiation depending on the infection of X. citri pv. glycines. The microbial community's abundance, diversity, and similarity showed a difference between infected and non-infected soybean. Microbiota community analysis, excluding X. citri pv. glycines, revealed that Pseudomonas spp. would increase the population of the infected soybean. Results of DESeq analyses suggested that energy metabolism, secondary metabolite, and TCA cycle metabolism were actively diverse in the non-infected soybeans. Additionally, Streptomyces bacillaris S8, an endophyte microbiota member, was nominated as a key microbe in the healthy soybeans. Genome analysis of S. bacillaris S8 presented that salinomycin may be the critical antibacterial metabolite. Our findings on the composition of soybean microbiota communities and the key strain information will contribute to developing biological control strategies against X. citri pv. glycines.

Keywords

Acknowledgement

This research was supported by an agenda research program by the Rural Development Administration (PJ015871).

References

  1. Aziz, R. K., Bartels, D., Best, A. A., DeJongh, M., Disz, T., Edwards, R. A., Formsma, K., Gerdes, S., Glass, E. M., Kubal, M., Meyer, F., Olsen, G. J., Olson, R., Osterman, A. L., Overbeek, R. A., McNeil, L. K., Paarmann, D., Paczian, T., Parrello, B., Pusch, G. D., Reich, C., Stevens, R., Vassieva, O., Vonstein, V., Wilke, A. and Zagnitko, O. 2008. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9:75. https://doi.org/10.1186/1471-2164-9-75
  2. Bintarti, A. F., Sulesky-Grieb, A., Stopnisek, N. and Shade, A. 2022. Endophytic microbiome variation among single plant seeds. Phytobiomes J. 6:45-55. https://doi.org/10.1094/PBIOMES-04-21-0030-R
  3. Blin, K., Shaw, S., Kloosterman, A. M., Charlop-Powers, Z., van Wezel, G. P., Medema, M. H. and Weber, T. 2021. antiSMASH 6.0: improving cluster detection and comparison capabilities. Nucleic Acids Res. 49:W29-W35. https://doi.org/10.1093/nar/gkab335
  4. Callahan, B. J., McMurdie, P. J., Rosen, M. J., Han, A. W., Johnson, A. J. A. and Holmes, S. P. 2016. DADA2: high-resolution sample inference from Illumina amplicon data. Nat. Methods 13:581-583. https://doi.org/10.1038/nmeth.3869
  5. Chen, S., Chen, X. and Xu, J. 2016. Impacts of climate change on agriculture: evidence from China. J. Environ. Econ. Manage. 76:105-124. https://doi.org/10.1016/j.jeem.2015.01.005
  6. Colombo, E. M., Kunova, A., Pizzatti, C., Saracchi, M., Cortesi, P. and Pasquali, M. 2019. Selection of an endophytic Streptomyces sp. strain DEF09 from wheat roots as a biocontrol agent against Fusarium graminearum. Front. Microbiol. 10:2356. https://doi.org/10.3389/fmicb.2019.02356
  7. Dang, H., Zhang, T., Li, G., Mu, Y., Lv, X., Wang, Z. and Zhuang, L. 2020. Root-associated endophytic bacterial community composition and structure of three medicinal licorices and their changes with the growing year. BMC Microbiol. 20:291. https://doi.org/10.1186/s12866-020-01977-3
  8. de Almeida Lopes, K. B., Carpentieri-Pipolo, V., Oro, T. H., Stefani Pagliosa, E. and Degrassi, G. 2016. Culturable endophytic bacterial communities associated with field-grown soybean. J. Appl. Microbiol. 120:740-755. https://doi.org/10.1111/jam.13046
  9. Deng, S., Caddell, D. F., Xu., G., Dahlen, L., Washington, L., Yang, J. and Coleman-Derr, D. 2021. Genome wide association study reveals plant loci controlling heritability of the rhizosphere microbiome. ISME J. 15:3181-3194. https://doi.org/10.1038/s41396-021-00993-z
  10. Dewangan, J., Srivastava, S. and Rath, S. K. 2017. Salinomycin: a new paradigm in cancer therapy. Tumour Biol. 39:1010428317695035.
  11. Dini-Andreote, F. and Raaijmakers, J. M. 2018. Embracing community ecology in plant microbiome research. Trends Plant Sci. 23:467-469. https://doi.org/10.1016/j.tplants.2018.03.013
  12. Dong, L., Cheng, R., Xiao, L., Wei, F., Wei, G., Xu, J., Wang, Y., Guo, X., Chen, Z. and Chen, S. 2018. Diversity and composition of bacterial endophytes among plant parts of Panax notoginseng. Chin. Med. 13:41. https://doi.org/10.1186/s13020-018-0198-5
  13. Han, Q., Ma, Q., Chen, Y., Tian, B., Xu, L., Bai, Y., Chen, W. and Li, X. 2020. Variation in rhizosphere microbial communities and its association with the symbiotic efficiency of rhizobia in soybean. ISME J. 14:1915-1928. https://doi.org/10.1038/s41396-020-0648-9
  14. Hannula, S. E., Zhu, F., Heinen, R. and Bezemer, T. M. 2019. Foliar-feeding insects acquire microbiomes from the soil rather than the host plant. Nat. Commun. 10:1254. https://doi.org/10.1038/s41467-019-09284-w
  15. Hwang, H.-H., Chien, P.-R., Huang, F.-C., Hung, S.-H., Kuo, C.-H., Deng, W.-L., Chiang, E.-P. I. and Huang, C.-C. 2021. A plant endophytic bacterium, Burkholderia seminalis strain 869T2, promotes plant growth in Arabidopsis, Pak Choi, Chinese Amaranth, Lettuces, and other vegetables. Microorganisms 9:1703. https://doi.org/10.3390/microorganisms9081703
  16. Ikeda, S., Rallos, L. E. E., Okubo, T., Eda, S., Inaba, S., Mitsui, H. and Minamisawa, K. 2008. Microbial community analysis of field-grown soybeans with different nodulation phenotypes. Appl. Environ. Microbiol. 74:5704-5709. https://doi.org/10.1128/AEM.00833-08
  17. Jagermeyr, J., Robock, A., Elliott, J., Muller, C., Xia, L., Khabarov, N., Folberth, C., Schmid, E., Liu, W., Zabel, F., Rabin, S. S., Puma, M. J., Heslin, A., Franke, J., Foster, I., Asseng, S., Bardeen, C. G., Toon, O. B. and Rosenzweig, C. 2020. A regional nuclear conflict would compromise global food security. Proc. Natl. Acad. Sci. U. S. A. 117:7071-7081. https://doi.org/10.1073/pnas.1919049117
  18. Jeon, C.-W., Kim, D.-R. and Kwak, Y.-S. 2019. Valinomycin, produced by Streptomyces sp. S8, a key antifungal metabolite in large patch disease suppressiveness. World J. Microbiol. Biotechnol. 35:128. https://doi.org/10.1007/s11274-019-2704-z
  19. Jeong, N., Kim, K.-S., Jeong, S., Kim, J.-Y., Park, S.-K., Lee, J. S., Jeong, S.-C., Kang, S.-T., Ha, B.-K., Kim, D.-Y., Kim, N., Moon, J.-K. and Choi, M. S. 2019. Korean soybean core collection: genotypic and phenotypic diversity population structure and genome-wide association study. PLoS ONE 14:e0224074. https://doi.org/10.1371/journal.pone.0224074
  20. Kang, I.-J., Kim, K. S., Beattie, G. A., Chung, H., Heu, S. and Hwang, I. 2021. Characterization of Xanthomonas citri pv. glycines population genetics and virulence in a national survey of bacterial pustule disease in Korea. Plant Pathol. J. 37:652-661. https://doi.org/10.5423/PPJ.FT.11.2021.0164
  21. Kruskal, W. H. and Wallis, W. A. 1952. Use of ranks in one-criterion variance analysis. J. Am. Stat. Assoc. 47.260:583-621. https://doi.org/10.1080/01621459.1952.10483441
  22. Kim, D.-R., Cho, G., Jeon, C.-W., Weller, D. M., Thomashow, L. S., Paulitz, T. C. and Kwak, Y.-S. 2019a. A mutualistic interaction between Streptomyces bacteria, strawberry plants and pollinating bees. Nat. Commun. 10:4802. https://doi.org/10.1038/s41467-019-12785-3
  23. Kim, D.-R., Jeon, C.-W., Cho, G., Thomashow, L. S., Weller, D. M., Paik, M.-J., Lee, Y. B. and Kwak, Y.-S. 2021a. Glutamic acid reshapes the plant microbiota to protect plants against pathogens. Microbiome 9:244. https://doi.org/10.1186/s40168-021-01186-8
  24. Kim, D.-R. and Kwak, Y.-S. 2021. A genome-wide analysis of antibiotic producing genes in Streptomyces globisporus SP6C4. Plant Pathol. J. 37:389-395. https://doi.org/10.5423/PPJ.NT.03.2021.0047
  25. Kim, M.-J., Chae, D.-H., Cho, G., Kim, D.-R. and Kwak, Y.-S. 2019b. Characterization of antibacterial strains against kiwifruit bacterial canker pathogen. Plant Pathol. J. 35:473-485. https://doi.org/10.5423/PPJ.OA.05.2019.0154
  26. Kim, S.-H., Cho, G., Lee, S. I., Kim, D.-R. and Kwak, Y.-S. 2021b. Comparison of bacterial community of healthy and Erwinia amylovora infected apples. Plant Pathol. J. 37:396-403. https://doi.org/10.5423/PPJ.NT.04.2021.0062
  27. Lau, J. A., Lennon, J. T. and Heath, K. D. 2017. Trees harness the power of microbes to survive climate change. Proc. Natl. Acad. Sci. U. S. A. 114:11009-11011. https://doi.org/10.1073/pnas.1715417114
  28. Longley, R., Noel, Z. A., Benucci, G. M. N., Chilvers, M. I., Trail, F. and Bonito, G. 2020. Crop management impacts the soybean (Glycine max) microbiome. Front. Microbiol. 11:1116. https://doi.org/10.3389/fmicb.2020.01116
  29. Lopez-Velasco, G., Carder, P. A., Welbaum, G. E. and Ponder, M. A. 2013. Diversity of the spinach (Spinacia oleracea) spermosphere and phyllosphere bacterial communities. FEMS Microbiol. Lett. 346:146-154. https://doi.org/10.1111/1574-6968.12216
  30. Lundberg, D. S., Yourstone, S., Mieczkowski, P., Jones, C. D. and Dangl, J. L. 2013. Practical innovations for high-throughput amplicon sequencing. Nat. Methods 10:999-1002. https://doi.org/10.1038/nmeth.2634
  31. Lu, T., Ke, M., Lavoie, M., Jin, Y., Fan, X., Zhang, Z., Fu, Z., Sun, L., Gillings, M., Penuelas, J., Qian, H. and Zhu, Y.-G. 2018. Rhizosphere microorganisms can influence the timing of plant flowering. Microbiome 6:231. https://doi.org/10.1186/s40168-018-0615-0
  32. Mingma, R., Pathom-aree, W., Trakulnaleamsai, S., Thamchaipenet, A. and Duangmal, K. 2014. Isolation of rhizospheric and roots endophytic actinomycetes from Leguminosae plant and their activities to inhibit soybean pathogen, Xanthomonas campestris pv. glycine. World J. Microbiol. Biotechnol. 30:271-280. https://doi.org/10.1007/s11274-013-1451-9
  33. Murali, A., Bhargava, A. and Wright, E. S. 2018. IDTAXA: a novel approach for accurate taxonomic classification of microbiome sequences. Microbiome 6:140. https://doi.org/10.1186/s40168-018-0521-5
  34. Orozco-Mosqueda, M. D. C. and Santoyo, G. 2021. Plant-microbial endophytes interactions: scrutinizing their beneficial mechanisms from genomic explorations. Curr. Plant Biol. 25:100189. https://doi.org/10.1016/j.cpb.2020.100189
  35. Park, D. S., Kim, J. S., Han. C. H., Ko, S. J. and Kim, H. K. 2007. (Korea) The primer set for sensitive and specific detection of Xanthomonas axonopodis pv. glycines by polymerase chain reaction. KB101834763B1. 9 May 2007.
  36. Reverchon, F. and Mendez-Bravo, A. 2021. Plant-mediated above-belowground interactions: a phytobiome story. In: Plant-animal interactions: source of biodiversity, eds. by K. Del-Claro and H. M. Torezan-Sillingardi, pp. 205-231. Springer, Cham, Switzerland.
  37. Rodriguez, R. and Duran, P. 2020. Natural holobiome engineering by using native extreme microbiome to counteract the climate change effects. Front. Bioeng. Biotechnol. 8:568. https://doi.org/10.3389/fbioe.2020.00568
  38. Simonin, M., Briand, M., Chesneau, G., Rochefort, A., Marais, C., Sarniguet, A. and Barret, M. 2022. Seed microbiota revealed by a large-scale meta-analysis including 50 plant species. New Phytol. 234:1448-1463. https://doi.org/10.1111/nph.18037
  39. Teeling, H. and Glockner, F. O. 2012. Current opportunities and challenges in microbial metagenome analysis: a bioinformatic perspective. Brief Bioinform. 13:728-742. https://doi.org/10.1093/bib/bbs039
  40. Teheran-Sierra, L. G., Funnicelli, M. I. G., de Carvalho, L. A. L., Ferro, M. I. T., Soares, M. A. and Pinheiro, D. G. 2021. Bacterial communities associated with sugarcane under different agricultural management exhibit a diversity of plant growth-promoting traits and evidence of synergistic effect. Microbiol. Res. 247:126729. https://doi.org/10.1016/j.micres.2021.126729
  41. Villalobos, J. A., Yi, B. R. and Wallace, I. S. 2015. 2-Fluoro-Lfucose is a metabolically incorporated inhibitor of plant cell wall polysaccharide fucosylation. PLoS ONE 10:e0139091. https://doi.org/10.1371/journal.pone.0139091
  42. Wilson, K. 2001. Preparation of genomic DNA from bacteria. Curr. Protoc. Mol. Biol. 56:2.4. https://doi.org/10.1002/0471142727.mb0204s56
  43. Xiong, C., Singh, B. K., He, J.-Z., Han, Y.-L., Li, P.-P., Wan, L.-H., Meng, G.-Z., Liu, S.-Y., Wang, J.-T., Wu, C.-F., Ge, A.-H. and Zhang, L.-M. 2021. Plant developmental stage drives the differentiation in ecological role of the maize microbiome. Microbiome 9:171. https://doi.org/10.1186/s40168-021-01118-6
  44. Xu, T., Cao, L., Zeng, J., Franco, C. M. M., Yang, Y., Hu, X., Liu, Y., Wang, X., Gao, Y., Bu, Z., Shi, L., Zhou, G., Zhou, Q., Liu, X. and Zhu, Y. 2019a. The antifungal action mode of the rice endophyte Streptomyces hygroscopicus OsiSh-2 as a potential biocontrol agent against the rice blast pathogen. Pestic. Biochem. Physiol. 160:58-69. https://doi.org/10.1016/j.pestbp.2019.06.015
  45. Xu, Y., Ge, Y., Song, J. and Rensing, C. 2019b. Assembly of root-associated microbial community of typical rice cultivars in different soil types. Biol. Fertil. Soils 56:249-260. https://doi.org/10.1007/s00374-019-01406-2
  46. Yoon, S.-H., Ha, S.-M., Kwon, S., Lim, J., Kim, Y., Seo, H. and Chun, J. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 67:1613-1617. https://doi.org/10.1099/ijsem.0.001755