DOI QR코드

DOI QR Code

Optimizing Artificial Neural Network-Based Models to Predict Rice Blast Epidemics in Korea

  • Lee, Kyung-Tae (Department of Agricultural Biotechnology, Seoul National University) ;
  • Han, Juhyeong (Department of Agricultural Biotechnology, Seoul National University) ;
  • Kim, Kwang-Hyung (Department of Agricultural Biotechnology, Seoul National University)
  • 투고 : 2022.04.30
  • 심사 : 2022.05.29
  • 발행 : 2022.08.01

초록

To predict rice blast, many machine learning methods have been proposed. As the quality and quantity of input data are essential for machine learning techniques, this study develops three artificial neural network (ANN)-based rice blast prediction models by combining two ANN models, the feed-forward neural network (FFNN) and long short-term memory, with diverse input datasets, and compares their performance. The Blast_Weathe long short-term memory r_FFNN model had the highest recall score (66.3%) for rice blast prediction. This model requires two types of input data: blast occurrence data for the last 3 years and weather data (daily maximum temperature, relative humidity, and precipitation) between January and July of the prediction year. This study showed that the performance of an ANN-based disease prediction model was improved by applying suitable machine learning techniques together with the optimization of hyperparameter tuning involving input data. Moreover, we highlight the importance of the systematic collection of long-term disease data.

키워드

과제정보

This work was supported by the New Faculty Startup Fund from Seoul National University. The authors sincerely give thanks to Woo-il Lee, the Extension Specialist of the Rural Development Administration of Korea, for generously providing the historical data of rice blast occurrence from the National Crop Pest Management System.

참고문헌

  1. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S., Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mane, D., Monga, R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viegas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke, M., Yu, Y. and Zheng, X. 2016. TensorFlow: large-scale machine learning on heterogeneous distributed systems. Preprint at https://arxiv.org/abs/1603.04467.
  2. Batista, G. E. A. P. A., Prati, R. C. and Monard, M. C. 2004. A study of the behavior of several methods for balancing machine learning training data. ACM SIGKDD Explor. Newsl. 6:20-29. https://doi.org/10.1145/1007730.1007735
  3. Bhatia, A., Chug, A. and Prakash Singh, A. 2020. Application of extreme learning machine in plant disease prediction for highly imbalanced dataset. J. Stat. Manage. Syst. 23:1059-1068.
  4. Chemali, E., Kollmeyer, P. J., Preindl, M., Ahmed, R. and Emadi, A. 2017. Long short-term memory networks for accurate state-of-charge estimation of Li-ion batteries. IEEE Trans. Ind. Electron. 65:6730-6739. https://doi.org/10.1109/tie.2017.2787586
  5. Chung, H., Kang, S., Lee, Y.-H. and Park, S.-Y. 2020. Expression patterns of transposable elements in Magnaporthe oryzae under diverse developmental and environmental conditions. Res. Plant Dis. 26:38-43. https://doi.org/10.5423/RPD.2020.26.1.38
  6. Fenu, G. and Malloci, F. M. 2019. An application of machine learning technique in forecasting crop disease. In: Proceedings of the 2019 3rd International Conference on Big Data Research, pp. 76-82. Association for Computing Machinery, New York, NY, USA.
  7. Fenu, G. and Malloci, F. M. 2021. Forecasting plant and crop disease: an explorative study on current algorithms. Big Data Cogn. Comput. 5:2. https://doi.org/10.3390/bdcc5010002
  8. Hochreiter, S. and Schmidhuber, J. 1996. LSTM can solve hard long time lag problems. In: Proceedings of the 9th International Conference on Neural Information Processing Systems, pp. 473-479. MIT Press, Cambridge, MA, USA.
  9. Jeon, J. 2019. Phytobiome as a potential factor in nitrogen-induced susceptibility to the rice blast disease. Res. Plant Dis. 25:103-107. https://doi.org/10.5423/RPD.2019.25.3.103
  10. Juroszek, P. and von Tiedemann, A. 2011. Potential strategies and future requirements for plant disease management under a changing climate. Plant Pathol. 60:100-112. https://doi.org/10.1111/j.1365-3059.2010.02410.x
  11. Katsantonis, D., Kadoglidou, K., Dramalis, C. and Puigdollers, P. 2017. Rice blast forecasting models and their practical value: a review. Phytopathol. Mediterr. 56:187-216.
  12. Kaundal, R., Kapoor, A. S. and Raghava, G. P. S. 2006. Machine learning techniques in disease forecasting: a case study on rice blast prediction. BMC Bioinformatics 7:485. https://doi.org/10.1186/1471-2105-7-485
  13. Kim, K.-H., Cho, J., Lee, Y. H. and Lee, W.-S. 2015. Predicting potential epidemics of rice leaf blast and sheath blight in South Korea under the RCP 4.5 and RCP 8.5 climate change scenarios using a rice disease epidemiology model, EPIRICE. Agric. For. Meteorol. 203:191-207. https://doi.org/10.1016/j.agrformet.2015.01.011
  14. Kim, K.-H. and Jung, I. 2020. Development of a daily epidemiological model of rice blast tailored for seasonal disease early warning in South Korea. Plant Pathol. J. 36:406-417. https://doi.org/10.5423/PPJ.OA.07.2020.0135
  15. Kim, K.-H. and Lee, J. 2020. Smart plant disease management using agrometeorological big data. Res. Plant Dis. 26:121-133 (in Korean). https://doi.org/10.5423/RPD.2020.26.3.121
  16. Kim, Y., Roh, J.-H. and Kim, H. Y. 2018. Early forecasting of rice blast disease using long short-term memory recurrent neural networks. Sustainability 10:34. https://doi.org/10.3390/su10010034
  17. Kingma, D. P. and Ba, L. J. 2014. Adam: a method for stochastic optimization. Preprint at https://arxiv.org/abs/1412.6980.
  18. Lin, T.-Y., Goyal, P., Girshick, R., He, K. and Dollar, P. 2017. Focal loss for dense object detection. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2980-2988. Institute of Electrical and Electronics Engineers, Cambridge, MA, USA.
  19. Liu, A., Ghosh, J. and Martin, C. 2007. Generative oversampling for mining imbalanced datasets. In: Proceedings of the 2007 International Conference on Data Mining, eds. by R. Stahlbock, S. F. Crone and S. Lessmann, pp. 66-72. CSREA Press, Las Vegas, NV, USA.
  20. Malicdem, A. R. and Fernandez, P. L. 2015. Rice blast disease forecasting for northern Philippines. WSEAS Trans. Inf. Sci. Appl. 12:120-129.
  21. Nettleton, D. F., Katsantonis, D., Kalaitzidis, A., Sarafijanovic-Djukic, N., Puigdollers, P. and Confalonieri, R. 2019. Predicting rice blast disease: machine learning versus process-based models. BMC Bioinformatics 20:514. https://doi.org/10.1186/s12859-019-3065-1
  22. Probst, P., Boulesteix, A.-L. and Bischl, B. 2019. Tunability: importance of hyperparameters of machine learning algorithms. J. Mach. Learn. Res. 20:1-32.
  23. Sola, J. and Sevilla, J. 1997. Importance of input data normalization for the application of neural networks to complex industrial problems. IEEE Trans. Nucl. Sci. 44:1464-1468. https://doi.org/10.1109/23.589532
  24. Wang, J. C., Correll, J. C. and Jia, Y. 2015. Characterization of rice blast resistance genes in rice germplasm with monogenic lines and pathogenicity assays. Crop Prot. 72:132-138. https://doi.org/10.1016/j.cropro.2015.03.014
  25. Yang, I., Jeon, W. H. and Moon, J. 2019. A study on a distance based coordinate calculation method using Inverse Haversine Method. J. Dig. Contents Soc. 20:2097-2102. https://doi.org/10.9728/dcs.2019.20.10.2097