DOI QR코드

DOI QR Code

Detection and Quantification of Apple Stem Grooving Virus in Micropropagated Apple Plantlets Using Reverse-Transcription Droplet Digital PCR

  • Kim, Sung-Woong (Department of Applied Biology, Institute of Environmentally Friendly Agriculture, Chonnam National University) ;
  • Lee, Hyo-Jeong (Department of Applied Biology, Institute of Environmentally Friendly Agriculture, Chonnam National University) ;
  • Cho, Kang Hee (Fruit Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Jeong, Rae-Dong (Department of Applied Biology, Institute of Environmentally Friendly Agriculture, Chonnam National University)
  • 투고 : 2022.05.30
  • 심사 : 2022.06.29
  • 발행 : 2022.08.01

초록

Apple stem grooving virus (ASGV) is a destructive viral pathogen of pome fruit trees that causes significant losses to fruit production worldwide. Obtaining ASGV-free propagation materials is essential to reduce economic losses, and accurate and sensitive detection methods to screen ASGV-free plantlets during in vitro propagation are urgently necessary. In this study, ASGV was sensitively and accurately quantified from in vitro propagated apple plantlets using a reverse transcription droplet digital polymerase chain reaction (RT-ddPCR) assay. The optimized RT-ddPCR assay was specific to other apple viruses, and was at least 10-times more sensitive than RT-real-time quantitative PCR assay. Furthermore, the optimized RT-ddPCR assay was validated for the detection and quantification of ASGV using micropropagated apple plantlet samples. This RT-ddPCR assay can be utilized for the accurate quantitative detection of ASGV infection in ASGV-free certification programs, and can thus contribute to the production of ASGV-free apple trees.

키워드

과제정보

This research was financially supported by Korea Institute of Planning & Evaluation for Technology in Food, Agriculture, Forestry & Fisheries (iPET) (320040-05-3-WT011).

참고문헌

  1. Bhardwaj, P. and Hallen, V. 2019. Molecular evidence of apple stem grooving virus infecting Ficus palmata. Trees 33:1-9. https://doi.org/10.1007/s00468-018-1752-6
  2. Dube, S., Qin, J. and Ramakrishnan, R. 2008. Mathematical analysis of copy number variation in a DNA sample using digital PCR on a nanofluidic device. PLoS ONE 3:e2876. https://doi.org/10.1371/journal.pone.0002876
  3. Fronhoffs, S., Totzke, G., Stier, S., Wernert, N., Rothe, M., Bruning, T., Koch, B., Sachinidis, A., Vetter, H. and Ko, Y. 2002. A method for the rapid construction of cRNA standard curves in quantitative real-time reverse transcription polymerase chain reaction. Mol. Cell. Probes 16:99-110. https://doi.org/10.1006/mcpr.2002.0405
  4. Hindson, B. J., Ness, K. D., Maasquelier, D. A., Belgrader, P., Heredia, N. J., Makarewicz, A. J., Bright, I. J., Lucero, M. Y., Hiddessen, A. L., Legler, T. C., Kitano, T. K., Hodel, M. R., Petersen, J. F., Wyatt, P. W., Steenblock, E. R., Shah, P. H., Bousse, L. J., Troup, C. B., Mellen, J. C., Wittmann, D. K., Erndt, N. G., Cauley, T. H., Koehler, R. T., So, A. P., Dube, S., Rose, K. A., Montesclaros, L., Wang, S., Stumbo, D. P., Hodges, S. P., Romine, S., Milanovich, F. P., White, H. E., Regan, J. F., Karlin-Neumann, G. A., Hindson, C. M., Saxonov, S. and Colston, B. W. 2011. High-throughput droplet digital PCR system for absolute quantification of DNA copy number. Anal. Chem. 83:8604-8610. https://doi.org/10.1021/ac202028g
  5. Hu, G.-J., Dong, Y.-F., Zhang, Z.-P., Fan, X.-D., Ren, F. and Li, Z.-N. 2018. Effect of pre-culture on virus elimination from in vitro apple by thermotherapy coupled with shoot tip culture. J. Integr. Agric. 17:2015-2023. https://doi.org/10.1016/s2095-3119(18)61913-6
  6. Jeong, H.-W., Go, S.-M. and Jeong, R.-D. 2021. Rapid and specific detection of apple chlorotic leaf spot virus in pear by reverse-transcription recombinase polymerase amplification. Acta Virol. 65:237-241. https://doi.org/10.4149/av_2021_214
  7. Jiao, J., Kong, K., Han, J., Song, S., Bai, T., Song, C., Wang, M., Yan, Z., Zhang, H., Zhang, R., Feng, J. and Zheng, X. 2021. Field detection of multiple RNA viruses/viroids in apple using a CRISPR/Cas12a-based visual assay. Plant Biotechnol. J. 19:394-405. https://doi.org/10.1111/pbi.13474
  8. Kim, N.-Y., Lee, H.-J. and Jeong, R.-D. 2019. A portable detection assay for apple stem pitting virus using reverse transcription-recombinase polymerase amplification. J. Virol. Methods 274:113747. https://doi.org/10.1016/j.jviromet.2019.113747
  9. Korean Statistical Information Service. 2021. URL http://www.kosis.kr/index/index.do [30 March 2022].
  10. Kuypers, J. and Jerome, K. R. 2017. Applications of digital PCR for clinical microbiology. J. Clin. Microbiol. 55:1621-1628. https://doi.org/10.1128/JCM.00211-17
  11. Lee, H.-J., Cho, I.-S., Ju, H.-J. and Jeong, R.-D. 2021. Development of a reverse transcription droplet digital PCR assay for sensitive detection of peach latent mosaic viroid. Mol. Cell. Probe 58:101746. https://doi.org/10.1016/j.mcp.2021.101746
  12. Lee, S., Cha, J.-S., Kwon, Y., Lee, Y. S., Yoo, S. E., Kim, J. H. and Kim, D. 2020. Occurrence status of five apple virus and viroid in Korea. Res. Plant Dis. 26:95-102 (in Korean). https://doi.org/10.5423/RPD.2020.26.2.95
  13. Lu, Y., Yao, B., Wang, G. and Hong, N. 2018. The detection of ACLSV and ASPV in pear by RT-LAMP assays. J. Virol. Methods 252:80-85. https://doi.org/10.1016/j.jviromet.2017.11.010
  14. Malandraki, I., Beris, D., Isaioglou, I., Olmos, A., Varveri, C. and Vassilakos N. 2017. Simultaneous detection of three pome fruit tree viruses by one-step multiplex quantitative RT-PCR. PLoS ONE 12:e0180877. https://doi.org/10.1371/journal.pone.0180877
  15. Menzel, W., Jelkmann, W. and Maiss, D. 2002. Detection of four apple viruses by multiplex RT-PCR assay with coamplification of plant mRNA as internal control. J. Virol. Methods 99:81-92. https://doi.org/10.1016/S0166-0934(01)00381-0
  16. Nabi, S. U., Madhu, G. S., Rao, G. P. and Baranwal, V. K. 2022. Development of multiplex RT-PCR assay for simultaneous detection of four viruses infecting apple (Malus domestica). Lett. Appl. Microbiol. 74:586-592. https://doi.org/10.1111/lam.13643
  17. Pfaffl, M. W. and Hageleit, M. 2001. Validities of mRNA quantification using recombinant RNA and recombinant DNA external calibration curves in real-time RT-PCR. Biotechnol. Lett. 23:275-282. https://doi.org/10.1023/A:1005658330108
  18. Shim, H.-K., Hwang, K.-H., Shim, C.-K., Son, S.-W., Kim, D., Choi, Y.-M., Chung, Y., Kim, D.-H., Jee, H.-J. and Lee, S.-C. 2006. Molecular characterization of Apple stem grooving virus isolated from Talaromyces flavus. Plant Pathol. J. 22:260-264. https://doi.org/10.5423/PPJ.2006.22.3.260
  19. Vasudevan, H. N., Xu, P., Servellita, V., Miller, S., Liu, L., Gopez, A., Chiu, C. Y. and Abate, A. R. 2021. Digital droplet PCR accurately quantifies SARS-CoV-2 viral load from crude lysate without nucleic acid purification. Sci. Rep. 11:780. https://doi.org/10.1038/s41598-020-80715-1