DOI QR코드

DOI QR Code

Design and application of a high-rate dissolved air floatation process in a drinking water treatment plant: A field study for turbidity and algae removal

정수처리장 고속 용존공기부상공정의 설계 및 적용: 탁도 및 조류 제거를 위한 현장연구

  • Hyun Je Oh (School of Civil and Environmental Engineering, University of Science and Technology)
  • 오현제 (과학기술연합대학원대학교 건설환경공학과)
  • Received : 2022.11.14
  • Accepted : 2022.12.09
  • Published : 2022.12.15

Abstract

A high-rate dissolved air flotation (DAF) process, with a surface loading rate of 20-40 m3/m2/h, was introduced at the Y-Drinking Water Treatment Plant in South Korea. First, the DAF and granular activated carbon (GAC) processes were combined in the reactor, and the pilot plant was operated at 500 m3/day. The results from these tests demonstrated that there were significant decreases in turbidity, algae, geosmin, and 2-methylisoborneol (2-MIB) following implementation of the two processes. Then, the optimum design factors were used and the DAF system was introduced at the field-scaled plant (5,000 m3/day). The removal rate of algae and turbidity was evaluated over 56 days in summer. The number of algae in the treated water was maintained at below 20-30 cells/mL, which represented an algae removal efficiency of 80-89%. The effluent turbidity was compared to the conventional sedimentation and DAF processes, and the average turbidity removal efficiency was 77%. These findings indicate that the high-rate DAF process is a promising method for the removal of low-density solids such as turbidity and algae during the treatment of drinking water, especially in summer. Additionally, GAC represents an acceptable treatment option to remove taste-and-odor-causing compounds (e.g., geosmin and 2-MIB).

국내 Y정수처리시설에 20-40 m3/m2/h의 표면부하율을 갖는 고속 용존공기부상공정을 도입하였다. 우선, 용존공기부상공정과 입상활성탄 공정이 결합된 반응기를 일처리용량 500 m3/day의 조건으로 운전하였다. 운전결과는 두 공정이 원수내 탁도, 조류, 지오스민, 2-MIB를 감소시킬 수 있음을 증명하였다. 도출된 최적 설계요소를 활용하여 현장규모의 공정(5,000 m3/day)에 용존공기부상공정을 도입하였다. 여름철 56일간 조류와 탁도 제거율을 평가하였다. 처리수 내 조류의 개체수는 20-30 cells/mL 이하로 유지되었으며, 조류 제거효율은 80-89%를 기록하였다. 침전법 및 용존공기부상공정 처리수질의 탁도 제거효율을 비교한 결과 평균 탁도 제거효율은 77%를 나타냈다. 이러한 결과들은 고속 용존공기부상공정이 여름철 음용수의 탁도 및 조류와 같은 저밀도 고형물을 제거하는데 유의미한 방법임을 나타냈으며, GAC는 맛·냄새를 유발하는 화합물(지오스민, 2-MIB)를 제거할 수 있는 공정 옵션인 것을 확인하였다.

Keywords

Acknowledgement

This work was supported by Korea Environment Industry & Technology Institute (KEITI) through Project for developing innovative drinking water and wastewater technologies Program, funded by Korea Ministry of Environment (MOE) (2020002700003).

References

  1. Edzwald, J.K. (2007). Developments of high rate dissolved air flotation for drinking water treatment, J. Water Suppl.: Res. Technol. - AQUA, 56, 399-409. https://doi.org/10.2166/aqua.2007.013
  2. Edzwald, J.K., Tobiason, J.E., Amato, T., and Maggi, L.J. (1999). Integrating high-rate DAF technology into plant design, J. Am. Water Works Assoc., 91, 41-53.
  3. Gao, S., Yang, J., Tian, J., Ma, F., Tu, G., Du, M. (2010). Electro-coagulation-flotation process for algae removal, J. Hazard. Mater., 177, 336-343. https://doi.org/10.1016/j.jhazmat.2009.12.037
  4. Ghernaout, B., Ghernaout, D., Saiba, A. (2010). Algae and cyanotoxins removal by coagulation/flocculation: A review, Desalination Water Treat., 20, 133-143. https://doi.org/10.5004/dwt.2010.1202
  5. Haarhoff, J. (2008). Dissolved air flotation: progress and prospects for drinking water treatment, J. Water Suppl.: Res. Technol. - AQUA, 57(2008) 555-567. https://doi.org/10.2166/aqua.2008.046b
  6. Hami, M.L., Al-Hashimi, M.A., and Al-Doori, M.M. (2007). Effect of activated carbon on BOD and COD removal in a dissolved air flotation unit treating refinery wastewater, Desalination, 216, 116-122. https://doi.org/10.1016/j.desal.2007.01.003
  7. Hess, R.J., Wang, L.K., J.M. and Wong, J.M. (2019). Operation and Performance of the AquaDAF® Process System for Water Purification, Lenox Institute Press.
  8. Jung, W., An, J.S., Song, K.W. and Oh, H.J. (2017). High Rate Dissolved Air Flotation (DAF) for the Removal of Algae Species, J. Korean Soc. Water Wastewater, 31(5), 415-419. https://doi.org/10.11001/jksww.2017.31.5.415
  9. Khiadani, M., Kolivand, R., Ahooghalandari, M. and Mohajer, M. (2014). Removal of turbidity from water by dissolved air flotation and conventional sedimentation systems using poly aluminum chloride as coagulant, Desalination Water Treat., 52, 985-989. https://doi.org/10.1080/19443994.2013.826339
  10. Kim, C., Lee, S.I., Hwang, S., Cho, M., Kim, H.S. and Noh, S.H. (2014). Removal of geosmin and 2-methylisoboneol (2-MIB) by membrane system combined with powdered activated carbon (PAC) for drinking water treatment, J. Water Process Eng., 4, 91-98. https://doi.org/10.1016/j.jwpe.2014.09.006
  11. Kim, S., Park, H., Han, M., Kim, T., Lee, S. (2017). Determination of flocculation design and operating condition of bubble generating system for high rate DAF, J. Water Treat., 25, 67-75.
  12. Kwon, S.B., Ahn, H.W., Ahn, C.J. and Wang, C.K. (2004). A case study of dissolved air flotation for seasonal high turbidity water in Korea, Water Sci. Technol., 50, 245-253.
  13. Korea Ministry of Environment Water Information System, Algae Information System, http://water.nier.go.kr/algae/algaeInfoStep01.do?menuGubun=Y, (September 1, 2015).
  14. Lee, K.H., Kim, H., KuK, J.W., Chung, J.D., Park, S., Kwon, E.E. (2020). Micro-bubble flow simulation of dissolved air flotation process for water treatment using computational fluid dynamics technique, Environ. Pollut., 256, 112050.
  15. Liang, H., Nan, J., He, W., Li, G. (2009). Algae removal by ultrasonic irradiation-coagulation, Desalination, 239, 191-197. https://doi.org/10.1016/j.desal.2007.12.035
  16. Matsui, Y., Nakano, Y., Hiroshi, H., Ando, N., T. Matsushita, T., Ohno, K. (2010). Geosmin and 2-methylisoborneol adsorption on super-powdered activated carbon in the presence of natural organic matter, Water Sci. Technol., 62, 2664-2668. https://doi.org/10.2166/wst.2010.415
  17. Manjunath, N.T., Mehrotra, I. and Mathur, R.P. (2000). Treatment of wastewater from slaughterhouse by DAF-UASB system, Water Res., 34, 1930-1936. https://doi.org/10.1016/S0043-1354(99)00337-1
  18. Marston, T.R. and VandeVenter, L.W. (2015). DAF Pilot Study for Algae and DBP Reduction, J. New England Water Works Assoc., 129, 1.
  19. Marvin, R. (2005). DAF removes algae, eases manganese issues, Opflow, 31, 10-12. https://doi.org/10.1002/j.1551-8701.2005.tb01786.x
  20. Oliver, B.G., Shindler, D.B. (1980). Trihalomethanes from the chlorination of aquatic algae, Environ. Sci. Technol., 14, 1502-1505. https://doi.org/10.1021/es60172a004
  21. Paerl, H.W., Gardner, W.S., Havens, K.E., Joyner, A.R., McCarthy, M.J., Newell, S.E., Qin, B., Scott, J.T. (2016). Mitigating cyanobacterial harmful algal blooms in aquatic ecosystems impacted by climate change and anthropogenic nutrients, Harmful Algae, 54, 213-222. https://doi.org/10.1016/j.hal.2015.09.009
  22. Price, J.I., Herberling, M.T. (2018). The effects of source water quality on drinking water treatment costs: a review and synthesis of empirical literature, Ecol Econ., 151, 195-209.
  23. Reali, M.A.P. and Marchetto, M. (2001). High-rate dissolved air flotation for water treatment, Water Sci. Technol., 43, 43-49.
  24. Soyluoglu, M., Kim, D., Zaker, Y., Karanfil, T. (2022). Removal mechanisms of geosmin and MIB by oxygen nanobubbles during water treatment, Chem. Eng. J., 443, 136535.
  25. Wong, J. (2013). Clarifying treatment: Dissolved air flotation provides alternative for treating raw water with light particles. Water World.