Acknowledgement
이 논문은 2020 년도 한국방송통신대학교 학술연구비 지원을 받아 작성된 것입니다.
References
- Acevedo, B., Camina, C., Corona, J.E., Borras, L. and Barat, R. (2015) The metabolic versatility of PAOs as an opportunity to obtain a highly P-enriched stream for further P-recovery, Chem. Eng. J., 270, 459-467. https://doi.org/10.1016/j.cej.2015.02.063
- Ahlgren, J., Reitzel, K., De Brabandere, H., Gogoll, A. and Rydin, E. (2011). Release of organic P forms from lake sediments. Water Res., 45(2), 565-572. https://doi.org/10.1016/j.watres.2010.09.020
- Barber, W.P.F. (2016). Thermal hydrolysis for sewage treatment: A critical review, Water Res., 104, 53-71. https://doi.org/10.1016/j.watres.2016.07.069
- Carrere, H., Bougrier, C., Castets, D. and Delgenes, J.P. (2008) Impact of initial biodegradability on sludge anaerobic digestion enhancement by thermal pretreatment, J. Environ. Sci. Health, Part A, Toxic Hazard. Subst. Environ. Eng., 43(13), 1551-1555. https://doi.org/10.1080/10934520802293735
- Cordell, D., Drangert. J. and White, S. (2009). The story of phosphorus: Global food security and food for thought, Glob. Environ. Chang., 19(2), 292-305. https://doi.org/10.1016/j.gloenvcha.2008.10.009
- Cusick, R.D., Ullery, M.L., Dempsey, B.A. and Logan, B.E. (2014). Electrochemical struvite precipitation from digestate with a fluidized bed cathode microbial electrolysis cell, Water Res., 54, 297-306. https://doi.org/10.1016/j.watres.2014.01.051
- Feng, C., Welles, L., Zhang, X., Pronk, M., de Graaff, D. and van Loosdrecht, M. (2020) Stress-induced assays for polyphosphate quantification by uncoupling acetic acid uptake and anaerobic phosphorus release, Water Res., 169, 115228
- Fernandez-Polanco, D., Aagesen, E., Fdz-Polanco, M. and Perez-Elvira, S.I. (2021). Comparative analysis of the thermal hydrolysis integration within WWTSs as a pre-, inter- or post-treatment for anaerobic digestion of sludge, Energy, 223, 120041.
- Grady Jr., C.P.L., Daigger, G.T. and Lim, H.C. (1999). Biological wastewater treatment. 2nd Ed., Marcel Dekker, Inc., New York.
- Happe, M., Sugnaux, M., Cachelin, C.P., Stauffer, M., Zufferey, G., Kahoun, T., Salamin, Egli, T., Comninellis, C., Grogg, A.F. and Fischer, F. (2016). Scale-up of phosphate remobilization from sewage sludge in a microbial fuel cell, Bioresour. Technol., 200, 435-443. https://doi.org/10.1016/j.biortech.2015.10.057
- Han, X., Wang, F., Zhou, B., Chen, H., Yuan, R., Liu, S., Zhou, X., Gao, L., Lu, Y. and Zhang, R. (2019). Phosphorus complexation of sewage sludge during thermal hydrolysis with different reaction temperature and reaction time by P K-edge XANES and 31P NMR, Sci. Total Environ., 688, 1-9. https://doi.org/10.1016/j.scitotenv.2019.06.017
- Haug, R.T., Stuckey, D.C., Gossett, J.M. and McCarty, P.L. (1978). Effect of thermal pretreatment on digestibility and dewaterability of organic sludges, J. Water Pollut. Control. Fed., 50(1), 73-85.
- He, H., Xin, X., Qiu, W., Li, D., Liu, Z. and Ma, J. (2021). Waste sludge disintegration, methanogenesis and final disposal via various pretreatments: Comparison of performance and effectiveness, Environ. Sci. Ecotechnol., 8, 100132.
- He, Z.W., Liu, W.Z., Wang, L., Tang, C.C. Guo, Z.C., Yang, C.X. and Wang, A.J. (2016). Clarification of phosphorus fractions and phosphorus release enhancement mechanism related to pH during waste activated sludge treatment, Bioresour. Technol., 222, 217-225. https://doi.org/10.1016/j.biortech.2016.10.010
- He, Z.W., Tang, C.C, Wang, L., Guo, Z.C., Zhou, A.J., Sun, D., Liu, W.Z. and Wang, A.J. (2017). Transformation and release of phosphorus from wastewater activated sludge upon combined acid/alkaline treatment, R. Soc. Chem., 7, 35340-35345.
- He, Z.W., Yang, C.X., Tang, C.C., Liu, W.Z., Zhou, A.J., Ren, Y.X., Wang, A.J. (2021). Response of anaerobic digestion of waste activated sludge to residual ferric ion, Bioresour. Technol., 322, 124536.
- Hou, H., Li, Z., Liu, B., Liang, S., Xiao, K., Zhu, Q., Hu, S., Yang, J. and Hu, J. (2020). Biogas and phosphorus recovery from waste activated sludge with protocatechuic acid enhanced Fenton pretreatment, anaerobic digestion and microbial electrolysis cell, Sci. Total. Environ., 704, 135274.
- Huang, R. and Tang, Y. (2015). Speciation dynamics of phosphorus during (hydro) thermal treatments of sewage sludge, Environ. Sci. Technol., 49(24), 14466-14474. https://doi.org/10.1021/acs.est.5b04140
- Hu, D., Zhu, N., Li, Y., Yan, Y., and Zhang C. (2022). Acid/alkali pretreatment enhances the formation of vivianite during anaerobic fermentation of waste activated sludge, J. Environ. Manag., 319, 115760.
- Hu, P., Liu, J., Wu, L., Zou, L., Li, Y.Y. and Xu, Z.P. (2019). Simultaneous release of polyphosphate and iron-phosphate from waste activated sludge by anaerobic fermentation combined with sulfate reduction, Bioresour. Technol., 271, 182-189. https://doi.org/10.1016/j.biortech.2018.09.117
- Kim, J.S., Chae, S.C., Jeong, J.B., Park, S., Kim, S.A. and Nam, D.C. (2015a). Physicochemical Characteristics and Nutrient Release Flux from Sediment of the Weir Sections in the Lower of Jeonju Stream Basin, Jeollabukdo Institute of Health and Environmental Research, 1-43.
- Kim, M., Han, D.W. and Kim, D.J. (2015b). Selective release of phosphorus and nitrogen from waste activated sludge with combined thermal and alkali treatment, Bioresour. Technol., 190, 522-528. https://doi.org/10.1016/j.biortech.2015.01.106
- Latif, M.A., Mehta, C.M. and Batstone, D.J. (2015). Low pH anaerobic digestion of waste activated sludge for enhanced phosphorous release. Water Res., 81, 288-293. https://doi.org/10.1016/j.watres.2015.05.062
- Li, Y.Y. and Noike, T. (1992). Upgrading of anaerobic digestion of waste activated sludge by thermal pretreatment, Water Sci. Technol., 26(3-4) 857-866. https://doi.org/10.2166/wst.1992.0466
- Li, L., Pang, H., He, J. and Zhang, J. (2019). Characterization of phosphorus species distribution in waste activated sludge after anaerobic digestion and chemical precipitation with Fe3+ and Ma2+, Chem. Eng. J., 373, 1279-1285. https://doi.org/10.1016/j.cej.2019.05.146
- Liu, J., Deng, S., Qiu, B., Shang, Y., Tian, J., Bashir, A. and Cheng, X. (2019). Comparison of pretreatment methods for phosphorus release from waste activated sludge, 368, Chem. Eng. J., 754-763. https://doi.org/10.1016/j.cej.2019.02.205
- Ma, X., Ye, J., Jiang, L., Sheng, L., Liu, J., Li, Y.Y. and Xu, Z.P. (2019). Alkaline fermentation of waste activated sludge with calcium hydroxide to improve short-chain fatty acids production and extraction efficiency via layered double hydroxides, Bioresour. Technol., 279, 117-123. https://doi.org/10.1016/j.biortech.2019.01.128
- Mayer, B.K., Baker, L.A., Boyer, T.H., Drechsel, P., Gifford, M, Hanjra, M.A., Parameswaran, P., Stoltzfus, J., Westerhoff, P. and Rittmann, B.E. (2016). Total value of phosphorus recovery, Environ. Sci. Technol., 50(13), 6606-6620. https://doi.org/10.1021/acs.est.6b01239
- Ministry of Environment (2010). A Master Plan of Energy Self-reliance, 1-24.
- Ministry of Environment (2019). Statistics of Sewerage 2018.
- Ministry of Environment (2021). Statistics of Sewerage 2020.
- Morgan-Sagastume, F., Pratt, S., Karlsson, A., Cirne, D., Lant, P. and Werker, A. (2011). Production of volatile fatty acids by fermentation of waste activated sludge pre-treated in full-scale thermal hydrolysis plants, Bioresour. Technol., 102(3), 3089-3097. https://doi.org/10.1016/j.biortech.2010.10.054
- Ngo, P.L., Udugama, I.A., Gernaey, K.V., Young, B.R. and Baroutian, S. (2021). Mechanisms, status, and challenges of thermal hydrolysis and advanced thermal hydrolysis processes in sewage sludge treatment, Chemosphere, 281, 130890.
- Oosterhuis, M., Ringoot, D., Hendriks, A. and Roeleveld, P. (2014) Thermal hydrolysis of waste activated sludge at Hengelo wastewater treatment plant, the Netherlands, Water Sci. Technol., 70(1), 1-7. https://doi.org/10.2166/wst.2014.107
- Pardo, P., Lopez-Sanchez, J.F. and Rauret, G. (2003). Relationships between phosphorus fractionation and major components in sediments using the SMT harmonized extraction procedure, Anal. Bioanal. Chem., 376(2), 248-254. https://doi.org/10.1007/s00216-003-1897-y
- Park, J., Cayetano, R.D.A., Kim, G.B., Jo, Y., Kwon, Y., Lei, Z. and Kim, SH. (2022). Sludge disintegration and anaerobic digestion enhancement by alkaline-thermal pretreatment: Economic evaluation and microbial population analysis, Bioresour. Technol., 346, 126594.
- Pepe Sciarria, T., Vacca, G., Tambone, F., Trombino, L. and Adani, F. (2019). Nutrient recovery and energy production from digestate using microbial electrochemical technologies (METs), J. Cleaner Prod., 208, 1022-1029. https://doi.org/10.1016/j.jclepro.2018.10.152
- Pilli, S., More, T., Yan, S., Tyagi, R.D., and Surampalli, R.Y. (2015). Anaerobic digestion of thermal pre-treated sludge at different solids concentrations-Computation of mass-energy balance and greenhouse gas emissions. J. Environ. Manage., 157, 250-261. https://doi.org/10.1016/j.jenvman.2015.04.023
- Rickard, D. (2006). The Solubility of FeS, Geochim. Cosmochim. Acta, 70(23), 5779-5789. https://doi.org/10.1016/j.gca.2006.02.029
- Ruban, V., Lopez-Sanchez, J.F., Pardo, P., Rauret, G., Muntau, H. and Quevauviller, P. (2001). Harmonized protocol and certified reference material for the determination of extractable contents of phosphorus in freshwater sediments-A Synthesis of Recent Works, Fresenius J. Anal. Chem., 370(2-3), 224-228. https://doi.org/10.1007/s002160100753
- Salehi, S., Chemg. K.Y., Heitz, A. and Ginige, M.P. (2018). Re-visiting the Phostrip process to recover phosphorus from municipal wastewater, Chem. Eng. J., 343, 390-398. https://doi.org/10.1016/j.cej.2018.02.074
- Schutte, T., Niewersch, C., Wintgens, T. and Yuce, S. (2015). Phosphorus recovery from sewage sludge by nanofiltration in diafiltration mode, J. Memb. Sci., 480, 74-82. https://doi.org/10.1016/j.memsci.2015.01.013
- Shepherd, J.G., Joseph, S., Sohi, S.P. and Heal, K.V. (2017). Biochar and enhanced phosphate capture: Mapping mechanisms to functional properties, Chemosphere. 179, 57-74. https://doi.org/10.1016/j.chemosphere.2017.02.123
- Tao, G.J., Long, X.Y., Tang, R., Wang, J.Y., Fang, Z.D., Xie, C,X., Wang, T. and Peng, X.H. (2020). Comparison and optimization of extraction protocol for intracellular phosphorus and its polyphosphate in enhanced biological phosphorus removal (EBPR) sludge, Sci. Total. Environ., 699, 134389.
- Tomei, M. C., Braguglia, C. M., Cento, G. and Mininni, G. and Mininni, G. (2009). Modeling of anaerobic digestion of sludge, Crit. Rev. Environ. Sci. Technol., 39(12), 1003-1051. https://doi.org/10.1080/10643380801977818
- Van Dijk, L. (2012). "Thermal Hydrolysis of Sewage Sludge and the Recovery of Phosphate and Ammonium from Centrate Water", 17th European Biosolids and Organic Resources Conference.
- Wang, Q., Kuninobu, M., Kakimoto, K., Hiroaki, I. and Kato, Y. (1999). Upgrading of anaerobic digestion of waste activated sludge by ultrasonic pretreatment, Bioresour. Technol., 68(3), 309-313. https://doi.org/10.1016/S0960-8524(98)00155-2
- Weissbrodt D.G., Maillard, J., Brovelli, A., Chabrelie, A., May, J. and Holliger, C. (2014). Multilevel correlations in the biological phosphorus removal process: From bacterial enrichment to conductivity-based metabolic batch tests and polyphosphatase assays, Biotechnol. Bioeng., 111(12), 2421-2435. https://doi.org/10.1002/bit.25320
- Wilson, C.A., Tanneru, C.T., Banjade, S., Murthy, S.N. and Novak, J.T. (2011) Anaerobic digestion of raw and thermally hydrolyzed wastewater solids under various operational conditions, Water Environ. Res., 83(9), 815-825. https://doi.org/10.2175/106143011X12928814444934
- Xue, Y., Liu, H., Chen, S., Dichtl, N., Dai, X. and Li, N. (2015). Effects of thermal hydrolysis on organic matter solubilization and anaerobic digestion of high solid sludge, Chem. Eng. J. 264, 174-180. https://doi.org/10.1016/j.cej.2014.11.005
- Xie, C., Zhao, J., Tang, J., Xu, J., Lin, X. and Xu, X. (2011). The phosphorus fractions and alkaline phosphatase activities in sludge, Bioresour. Technol., 102, 2455-2461. https://doi.org/10.1016/j.biortech.2010.11.011
- Yan, W., Xu, H., Lu, D. and Zhou, Y. (2022). Effects of sludge thermal hydrolysis pretreatment on anaerobic digestion and downstream processes: mechanism, challenges and solutions, Bioresour. Technol., 344, 126248.
- Yu, B., Xiao, X., Wang, J., Hong, M., Deng, C., Li, Y.Y. and and Liu, J. (2021). Enhancing phosphorus recovery from sewage sludge using anaerobic-based processes: Current status and perspectives, Bioresour. Technol., 341, 125899.
- Zhang, D., Chen, Y., Zhao, Y. and Ye, Z. (2011). A new process for efficiently producing methane from waste activated sludge: Alkaline pretreatment of sludge followed by treatment of fermentation liquid in an EGSB reactor, Environ. Sci. Technol., 45(2), 803-808. https://doi.org/10.1021/es102696d
- Zhang, H.L., Fang, W., Wang, Y.P., Sheng, G.P., Zeng, R.L., Li, W.W. and Yu, H.Q. (2013). Phosphorus removal in an enhanced eiological phosphorus removal process: Roles of extracellular polymeric substances, Environ. Sci. Technol., 47(20) 11482-11489. https://doi.org/10.1021/es403227p
- Zhen, G., Lu, X., Kato, H., Zhao, Y. and Li, Y.Y. (2017). Overview of pretreatment strategies for enhancing sewage sludge disintegration and subsequent anaerobic digestion: Current advances, full-scale application and future perspectives, Renewable and Sustainable Energy Reviews, 69, 559-577. https://doi.org/10.1016/j.rser.2016.11.187
- Zhou, P., Meshref, M.N. and Dhar, B.R. (2021) Optimization of thermal hydrolysis process for enhancing anaerobic digestion in a wastewater treatment plant with existing primary sludge fermentation. Bioresour. Technol., 321, 124498.