DOI QR코드

DOI QR Code

Characteristics of phosphorus release from sludge with sludge disintegration

슬러지 가용화에 따른 인 방출 특성 연구

  • Chaeyoung Lee (Civil and Environmental Engineering, The University of Suwon) ;
  • Sun-Kee Han (Department of Environmental Health, Korea National Open University)
  • 이채영 (수원대학교 건설환경공학과) ;
  • 한선기 (한국방송통신대학교 보건환경학과)
  • Received : 2022.10.28
  • Accepted : 2022.11.30
  • Published : 2022.12.15

Abstract

The anaerobic digestion process produces methane while stabilizing sludge. As of 2020, 62 anaerobic digesters in public wastewater treatment plants are operational in Korea. Many researchers have studied to improve digester performance. Thermal hydrolysis technology is one of the pre-treatment methods for treating sludge. Reduced retention time and enhanced biogas production are the main advantages of sludge disintegration at relatively high temperatures and pressures. But nutrients like nitrogen and phosphorus are released from the pre-treated sludge. Phosphorus is a non-renewable resource that is essential to food production. Wastewater receives 20% of the total phosphate discharge, while 90% of the influent phosphorus load is in sludge. For efficient phosphorus recovery, it is essential to comprehend the phosphorus release characteristics during wastewater treatment, including anaerobic digestion. Biological or chemical processes can achieve phosphorus removal to comply with the effluent discharge limits regulations. The three primary sources of phosphorus in sludge are aluminum-bound phosphorus (Al-P), polyphosphate in phosphorus-accumulating organisms (PAOs), and iron-bound phosphorus (Fe-P). Anaerobic digestion is the typical method for recovering carbon and phosphorus. However, previous research has demonstrated that most phosphorus in anaerobic digestion occurs as a solid phase coupled with heavy metals. Therefore, the poor mass transfer rate results in a slow phosphorus release. Due to the recent growth in interest and significance of phosphorus recovery, many researchers have studied to improve the quantity of phosphorus released into the liquid phase through chelation addition, process operation optimization, and disintegration using sludge pre-treatment. The study aims to investigate characteristics of the phosphorus release associated with the thermal hydrolysis breakdown of sludge and propose a method for recovering phosphorus in a wastewater treatment plant. When solubilizing sludge using thermal hydrolysis pre-treatment, organic phosphates, inorganic phosphates, and polyphosphates are converted into ortho-phosphate. Therefore, applying thermal hydrolysis, anaerobic digestion, and phosphorus recovery processes (struvite formation or microbial electrolysis cells) can recover carbon and phosphorus.

Keywords

Acknowledgement

이 논문은 2020 년도 한국방송통신대학교 학술연구비 지원을 받아 작성된 것입니다.

References

  1. Acevedo, B., Camina, C., Corona, J.E., Borras, L. and Barat, R. (2015) The metabolic versatility of PAOs as an opportunity to obtain a highly P-enriched stream for further P-recovery, Chem. Eng. J., 270, 459-467. https://doi.org/10.1016/j.cej.2015.02.063
  2. Ahlgren, J., Reitzel, K., De Brabandere, H., Gogoll, A. and Rydin, E. (2011). Release of organic P forms from lake sediments. Water Res., 45(2), 565-572. https://doi.org/10.1016/j.watres.2010.09.020
  3. Barber, W.P.F. (2016). Thermal hydrolysis for sewage treatment: A critical review, Water Res., 104, 53-71. https://doi.org/10.1016/j.watres.2016.07.069
  4. Carrere, H., Bougrier, C., Castets, D. and Delgenes, J.P. (2008) Impact of initial biodegradability on sludge anaerobic digestion enhancement by thermal pretreatment, J. Environ. Sci. Health, Part A, Toxic Hazard. Subst. Environ. Eng., 43(13), 1551-1555. https://doi.org/10.1080/10934520802293735
  5. Cordell, D., Drangert. J. and White, S. (2009). The story of phosphorus: Global food security and food for thought, Glob. Environ. Chang., 19(2), 292-305. https://doi.org/10.1016/j.gloenvcha.2008.10.009
  6. Cusick, R.D., Ullery, M.L., Dempsey, B.A. and Logan, B.E. (2014). Electrochemical struvite precipitation from digestate with a fluidized bed cathode microbial electrolysis cell, Water Res., 54, 297-306. https://doi.org/10.1016/j.watres.2014.01.051
  7. Feng, C., Welles, L., Zhang, X., Pronk, M., de Graaff, D. and van Loosdrecht, M. (2020) Stress-induced assays for polyphosphate quantification by uncoupling acetic acid uptake and anaerobic phosphorus release, Water Res., 169, 115228
  8. Fernandez-Polanco, D., Aagesen, E., Fdz-Polanco, M. and Perez-Elvira, S.I. (2021). Comparative analysis of the thermal hydrolysis integration within WWTSs as a pre-, inter- or post-treatment for anaerobic digestion of sludge, Energy, 223, 120041.
  9. Grady Jr., C.P.L., Daigger, G.T. and Lim, H.C. (1999). Biological wastewater treatment. 2nd Ed., Marcel Dekker, Inc., New York.
  10. Happe, M., Sugnaux, M., Cachelin, C.P., Stauffer, M., Zufferey, G., Kahoun, T., Salamin, Egli, T., Comninellis, C., Grogg, A.F. and Fischer, F. (2016). Scale-up of phosphate remobilization from sewage sludge in a microbial fuel cell, Bioresour. Technol., 200, 435-443. https://doi.org/10.1016/j.biortech.2015.10.057
  11. Han, X., Wang, F., Zhou, B., Chen, H., Yuan, R., Liu, S., Zhou, X., Gao, L., Lu, Y. and Zhang, R. (2019). Phosphorus complexation of sewage sludge during thermal hydrolysis with different reaction temperature and reaction time by P K-edge XANES and 31P NMR, Sci. Total Environ., 688, 1-9. https://doi.org/10.1016/j.scitotenv.2019.06.017
  12. Haug, R.T., Stuckey, D.C., Gossett, J.M. and McCarty, P.L. (1978). Effect of thermal pretreatment on digestibility and dewaterability of organic sludges, J. Water Pollut. Control. Fed., 50(1), 73-85.
  13. He, H., Xin, X., Qiu, W., Li, D., Liu, Z. and Ma, J. (2021). Waste sludge disintegration, methanogenesis and final disposal via various pretreatments: Comparison of performance and effectiveness, Environ. Sci. Ecotechnol., 8, 100132.
  14. He, Z.W., Liu, W.Z., Wang, L., Tang, C.C. Guo, Z.C., Yang, C.X. and Wang, A.J. (2016). Clarification of phosphorus fractions and phosphorus release enhancement mechanism related to pH during waste activated sludge treatment, Bioresour. Technol., 222, 217-225. https://doi.org/10.1016/j.biortech.2016.10.010
  15. He, Z.W., Tang, C.C, Wang, L., Guo, Z.C., Zhou, A.J., Sun, D., Liu, W.Z. and Wang, A.J. (2017). Transformation and release of phosphorus from wastewater activated sludge upon combined acid/alkaline treatment, R. Soc. Chem., 7, 35340-35345.
  16. He, Z.W., Yang, C.X., Tang, C.C., Liu, W.Z., Zhou, A.J., Ren, Y.X., Wang, A.J. (2021). Response of anaerobic digestion of waste activated sludge to residual ferric ion, Bioresour. Technol., 322, 124536.
  17. Hou, H., Li, Z., Liu, B., Liang, S., Xiao, K., Zhu, Q., Hu, S., Yang, J. and Hu, J. (2020). Biogas and phosphorus recovery from waste activated sludge with protocatechuic acid enhanced Fenton pretreatment, anaerobic digestion and microbial electrolysis cell, Sci. Total. Environ., 704, 135274.
  18. Huang, R. and Tang, Y. (2015). Speciation dynamics of phosphorus during (hydro) thermal treatments of sewage sludge, Environ. Sci. Technol., 49(24), 14466-14474. https://doi.org/10.1021/acs.est.5b04140
  19. Hu, D., Zhu, N., Li, Y., Yan, Y., and Zhang C. (2022). Acid/alkali pretreatment enhances the formation of vivianite during anaerobic fermentation of waste activated sludge, J. Environ. Manag., 319, 115760.
  20. Hu, P., Liu, J., Wu, L., Zou, L., Li, Y.Y. and Xu, Z.P. (2019). Simultaneous release of polyphosphate and iron-phosphate from waste activated sludge by anaerobic fermentation combined with sulfate reduction, Bioresour. Technol., 271, 182-189. https://doi.org/10.1016/j.biortech.2018.09.117
  21. Kim, J.S., Chae, S.C., Jeong, J.B., Park, S., Kim, S.A. and Nam, D.C. (2015a). Physicochemical Characteristics and Nutrient Release Flux from Sediment of the Weir Sections in the Lower of Jeonju Stream Basin, Jeollabukdo Institute of Health and Environmental Research, 1-43.
  22. Kim, M., Han, D.W. and Kim, D.J. (2015b). Selective release of phosphorus and nitrogen from waste activated sludge with combined thermal and alkali treatment, Bioresour. Technol., 190, 522-528. https://doi.org/10.1016/j.biortech.2015.01.106
  23. Latif, M.A., Mehta, C.M. and Batstone, D.J. (2015). Low pH anaerobic digestion of waste activated sludge for enhanced phosphorous release. Water Res., 81, 288-293. https://doi.org/10.1016/j.watres.2015.05.062
  24. Li, Y.Y. and Noike, T. (1992). Upgrading of anaerobic digestion of waste activated sludge by thermal pretreatment, Water Sci. Technol., 26(3-4) 857-866. https://doi.org/10.2166/wst.1992.0466
  25. Li, L., Pang, H., He, J. and Zhang, J. (2019). Characterization of phosphorus species distribution in waste activated sludge after anaerobic digestion and chemical precipitation with Fe3+ and Ma2+, Chem. Eng. J., 373, 1279-1285. https://doi.org/10.1016/j.cej.2019.05.146
  26. Liu, J., Deng, S., Qiu, B., Shang, Y., Tian, J., Bashir, A. and Cheng, X. (2019). Comparison of pretreatment methods for phosphorus release from waste activated sludge, 368, Chem. Eng. J., 754-763. https://doi.org/10.1016/j.cej.2019.02.205
  27. Ma, X., Ye, J., Jiang, L., Sheng, L., Liu, J., Li, Y.Y. and Xu, Z.P. (2019). Alkaline fermentation of waste activated sludge with calcium hydroxide to improve short-chain fatty acids production and extraction efficiency via layered double hydroxides, Bioresour. Technol., 279, 117-123. https://doi.org/10.1016/j.biortech.2019.01.128
  28. Mayer, B.K., Baker, L.A., Boyer, T.H., Drechsel, P., Gifford, M, Hanjra, M.A., Parameswaran, P., Stoltzfus, J., Westerhoff, P. and Rittmann, B.E. (2016). Total value of phosphorus recovery, Environ. Sci. Technol., 50(13), 6606-6620. https://doi.org/10.1021/acs.est.6b01239
  29. Ministry of Environment (2010). A Master Plan of Energy Self-reliance, 1-24.
  30. Ministry of Environment (2019). Statistics of Sewerage 2018.
  31. Ministry of Environment (2021). Statistics of Sewerage 2020.
  32. Morgan-Sagastume, F., Pratt, S., Karlsson, A., Cirne, D., Lant, P. and Werker, A. (2011). Production of volatile fatty acids by fermentation of waste activated sludge pre-treated in full-scale thermal hydrolysis plants, Bioresour. Technol., 102(3), 3089-3097. https://doi.org/10.1016/j.biortech.2010.10.054
  33. Ngo, P.L., Udugama, I.A., Gernaey, K.V., Young, B.R. and Baroutian, S. (2021). Mechanisms, status, and challenges of thermal hydrolysis and advanced thermal hydrolysis processes in sewage sludge treatment, Chemosphere, 281, 130890.
  34. Oosterhuis, M., Ringoot, D., Hendriks, A. and Roeleveld, P. (2014) Thermal hydrolysis of waste activated sludge at Hengelo wastewater treatment plant, the Netherlands, Water Sci. Technol., 70(1), 1-7. https://doi.org/10.2166/wst.2014.107
  35. Pardo, P., Lopez-Sanchez, J.F. and Rauret, G. (2003). Relationships between phosphorus fractionation and major components in sediments using the SMT harmonized extraction procedure, Anal. Bioanal. Chem., 376(2), 248-254. https://doi.org/10.1007/s00216-003-1897-y
  36. Park, J., Cayetano, R.D.A., Kim, G.B., Jo, Y., Kwon, Y., Lei, Z. and Kim, SH. (2022). Sludge disintegration and anaerobic digestion enhancement by alkaline-thermal pretreatment: Economic evaluation and microbial population analysis, Bioresour. Technol., 346, 126594.
  37. Pepe Sciarria, T., Vacca, G., Tambone, F., Trombino, L. and Adani, F. (2019). Nutrient recovery and energy production from digestate using microbial electrochemical technologies (METs), J. Cleaner Prod., 208, 1022-1029. https://doi.org/10.1016/j.jclepro.2018.10.152
  38. Pilli, S., More, T., Yan, S., Tyagi, R.D., and Surampalli, R.Y. (2015). Anaerobic digestion of thermal pre-treated sludge at different solids concentrations-Computation of mass-energy balance and greenhouse gas emissions. J. Environ. Manage., 157, 250-261. https://doi.org/10.1016/j.jenvman.2015.04.023
  39. Rickard, D. (2006). The Solubility of FeS, Geochim. Cosmochim. Acta, 70(23), 5779-5789. https://doi.org/10.1016/j.gca.2006.02.029
  40. Ruban, V., Lopez-Sanchez, J.F., Pardo, P., Rauret, G., Muntau, H. and Quevauviller, P. (2001). Harmonized protocol and certified reference material for the determination of extractable contents of phosphorus in freshwater sediments-A Synthesis of Recent Works, Fresenius J. Anal. Chem., 370(2-3), 224-228. https://doi.org/10.1007/s002160100753
  41. Salehi, S., Chemg. K.Y., Heitz, A. and Ginige, M.P. (2018). Re-visiting the Phostrip process to recover phosphorus from municipal wastewater, Chem. Eng. J., 343, 390-398. https://doi.org/10.1016/j.cej.2018.02.074
  42. Schutte, T., Niewersch, C., Wintgens, T. and Yuce, S. (2015). Phosphorus recovery from sewage sludge by nanofiltration in diafiltration mode, J. Memb. Sci., 480, 74-82. https://doi.org/10.1016/j.memsci.2015.01.013
  43. Shepherd, J.G., Joseph, S., Sohi, S.P. and Heal, K.V. (2017). Biochar and enhanced phosphate capture: Mapping mechanisms to functional properties, Chemosphere. 179, 57-74. https://doi.org/10.1016/j.chemosphere.2017.02.123
  44. Tao, G.J., Long, X.Y., Tang, R., Wang, J.Y., Fang, Z.D., Xie, C,X., Wang, T. and Peng, X.H. (2020). Comparison and optimization of extraction protocol for intracellular phosphorus and its polyphosphate in enhanced biological phosphorus removal (EBPR) sludge, Sci. Total. Environ., 699, 134389.
  45. Tomei, M. C., Braguglia, C. M., Cento, G. and Mininni, G. and Mininni, G. (2009). Modeling of anaerobic digestion of sludge, Crit. Rev. Environ. Sci. Technol., 39(12), 1003-1051. https://doi.org/10.1080/10643380801977818
  46. Van Dijk, L. (2012). "Thermal Hydrolysis of Sewage Sludge and the Recovery of Phosphate and Ammonium from Centrate Water", 17th European Biosolids and Organic Resources Conference.
  47. Wang, Q., Kuninobu, M., Kakimoto, K., Hiroaki, I. and Kato, Y. (1999). Upgrading of anaerobic digestion of waste activated sludge by ultrasonic pretreatment, Bioresour. Technol., 68(3), 309-313. https://doi.org/10.1016/S0960-8524(98)00155-2
  48. Weissbrodt D.G., Maillard, J., Brovelli, A., Chabrelie, A., May, J. and Holliger, C. (2014). Multilevel correlations in the biological phosphorus removal process: From bacterial enrichment to conductivity-based metabolic batch tests and polyphosphatase assays, Biotechnol. Bioeng., 111(12), 2421-2435. https://doi.org/10.1002/bit.25320
  49. Wilson, C.A., Tanneru, C.T., Banjade, S., Murthy, S.N. and Novak, J.T. (2011) Anaerobic digestion of raw and thermally hydrolyzed wastewater solids under various operational conditions, Water Environ. Res., 83(9), 815-825. https://doi.org/10.2175/106143011X12928814444934
  50. Xue, Y., Liu, H., Chen, S., Dichtl, N., Dai, X. and Li, N. (2015). Effects of thermal hydrolysis on organic matter solubilization and anaerobic digestion of high solid sludge, Chem. Eng. J. 264, 174-180. https://doi.org/10.1016/j.cej.2014.11.005
  51. Xie, C., Zhao, J., Tang, J., Xu, J., Lin, X. and Xu, X. (2011). The phosphorus fractions and alkaline phosphatase activities in sludge, Bioresour. Technol., 102, 2455-2461. https://doi.org/10.1016/j.biortech.2010.11.011
  52. Yan, W., Xu, H., Lu, D. and Zhou, Y. (2022). Effects of sludge thermal hydrolysis pretreatment on anaerobic digestion and downstream processes: mechanism, challenges and solutions, Bioresour. Technol., 344, 126248.
  53. Yu, B., Xiao, X., Wang, J., Hong, M., Deng, C., Li, Y.Y. and and Liu, J. (2021). Enhancing phosphorus recovery from sewage sludge using anaerobic-based processes: Current status and perspectives, Bioresour. Technol., 341, 125899.
  54. Zhang, D., Chen, Y., Zhao, Y. and Ye, Z. (2011). A new process for efficiently producing methane from waste activated sludge: Alkaline pretreatment of sludge followed by treatment of fermentation liquid in an EGSB reactor, Environ. Sci. Technol., 45(2), 803-808. https://doi.org/10.1021/es102696d
  55. Zhang, H.L., Fang, W., Wang, Y.P., Sheng, G.P., Zeng, R.L., Li, W.W. and Yu, H.Q. (2013). Phosphorus removal in an enhanced eiological phosphorus removal process: Roles of extracellular polymeric substances, Environ. Sci. Technol., 47(20) 11482-11489. https://doi.org/10.1021/es403227p
  56. Zhen, G., Lu, X., Kato, H., Zhao, Y. and Li, Y.Y. (2017). Overview of pretreatment strategies for enhancing sewage sludge disintegration and subsequent anaerobic digestion: Current advances, full-scale application and future perspectives, Renewable and Sustainable Energy Reviews, 69, 559-577. https://doi.org/10.1016/j.rser.2016.11.187
  57. Zhou, P., Meshref, M.N. and Dhar, B.R. (2021) Optimization of thermal hydrolysis process for enhancing anaerobic digestion in a wastewater treatment plant with existing primary sludge fermentation. Bioresour. Technol., 321, 124498.